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ABSTRACT
We propose a novel and flexible DNA-storage architecture, which
divides the storage space into fixed-size units (blocks) that can be
independently and efficiently accessed at random for both read
and write operations, and further allows efficient sequential ac-
cess to consecutive data blocks. In contrast to prior work, in our
architecture a pair of random-access PCR primers of length 20 does
not define a single object, but an independent storage partition,
which is internally blocked and managed independently of other
partitions. We expose the flexibility and constraints with which
the internal address space of each partition can be managed, and
incorporate them into our design to provide rich and functional
storage semantics, such as block-storage organization, efficient im-
plementation of data updates, and sequential access. To leverage the
full power of the prefix-based nature of PCR addressing, we define a
methodology for transforming the internal addressing scheme of a
partition into an equivalent that is PCR-compatible. This allows us
to run PCR with primers that can be variably elongated to include
a desired part of the internal address, and thus narrow down the
scope of the reaction to retrieve a specific block or a range of blocks
within the partition with sufficiently high accuracy. Our wetlab
evaluation demonstrates the practicality of the proposed ideas and
a 140x reduction in sequencing cost and latency for retrieval of
individual blocks within the partition.

CCS CONCEPTS
• Hardware → Emerging technologies; Memory and dense
storage; • Information systems→ Information storage tech-
nologies; Storage architectures.
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1 INTRODUCTION
The rapid improvements in performance and cost of DNA synthesis
and sequencing methods have led to increased interest in the use
of DNA as a durable and compact medium for data storage, with a
large spectrum of available chemical tools that enable efficient data
access and manipulation of in-DNA data. A number of DNA storage
architectures have been proposed [1, 6, 9, 13, 14, 20, 23, 33, 42], with
numerous encoding schemes that seek to improve the resilience
against various types of complex errors, maximize the information
density, and allow for efficient data access. Computational primi-
tives such as similarity search have been designed on top of DNA
storage [3, 31], micro-fluidic chips and runtimes have been devel-
oped to automate wetlab protocols in DNA storage [40], and simple
but fully automated end-to-end DNA storage systems have already
been demonstrated [34].

One of the most notable features of DNA storage is that it can
provide random access at nearly constant latency [6, 23, 33], re-
gardless of the amount of data in the storage system. This is often
achieved through the use of the Polymerase Chain Reaction or PCR,
which is one of the most important and well-understood chemical
reactions with a wide range of routine uses in biochemistry. PCR is
a parameterizable reaction, the parameters being two short DNA
sequences, called primers. For optimal PCR performance, the length
of each primer is typically fixed at 20 characters [6, 23, 33, 36].
When two primers are inserted into a sample containing a DNA
storage system, running a single cycle of PCR will duplicate all
those DNA fragments in the sample that begin with the first primer
(forward primer) and end with the second primer (reverse primer).
After several PCR cycles, the targeted sequences will multiply expo-
nentially and become predominant in the sample. At that point, the
target DNA sequences can be easily read or sequenced at low price,
without reading all of the sequences from the original sample. 1

Most of the state-of-the-art DNA storage architectures are de-
signed around thementioned PCRmechanism that provides random
access. Logically, they are organized as key-value object stores [6,
20, 23], in which a pair of primers define the key, and the arbitrarily
sized value is stored in molecules which are tagged with the same
pair of primers. The layout of a DNA molecule in this architecture

1PCR is also applicable to RNA, for example in PCR COVID-19 tests, where the
appropriate primers would correspond to stable and well-known parts of the viral
RNA.
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is shown in Figure 1a. Note that a large object can be stored across
many molecules containing the same pair of primers, all of which
are retrieved during PCR with sufficient uniformity [23]; a part of
each molecule is thus reserved to uniquely identify the molecules
and re-establish the order between them in software, and we re-
fer to it as the index or internal address. An object that spans N
molecules requires log4 𝑁 bases for indexing.

While there are 440 = 280 unique combinations of letters that
could be used to define a pair of primers, most of them are not appro-
priate for PCR. First, PCR primers must have balanced GC content,
which means that the aggregate percentage of G and C characters in
the whole primer sequence should be close to 50% [23, 33]. Second,
all primers used in the same DNA sample must be significantly dif-
ferent from each other in Hamming distance to avoid amplification
of unwanted data [23, 33]. This constraint on minimum pairwise
distance between each pair of primers turns out to be a major prob-
lem [36, 37, 41], as the largest set of primers found so far to meet
such requirements contains only between ∼1000-3000 primers, de-
pending on the distance thresholds assumed [23, 33]. This allows us
to chemically distinguish between only about 1000 different objects
in a DNA pool through PCR [23]. To illustrate the implications of
this limitation, let’s assume that we have a DNA pool containing
1TB of data, which is comparable to an average storage disk. Given
that we can chemically tag the data with at most 1000 mutually
compatible primer pairs, the actual unit of random access is going
to be around 1GB on average. As a result, if a user wants to retrieve
1MB of data, they will have to first amplify (through PCR) and
then sequence a whole 1GB of data, with ∼99.9% of the sequenc-
ing output representing irrelevant data. Consequently, ∼99.9% of
the sequencing latency and cost is being wasted. The user would
then use software tools to extract the desired 1MB of data out of
the sequenced 1GB, discarding most of the sequenced data [6, 23].
Unfortunately, simply using longer primers would not alleviate the
problem. According to the available analytical models, the number
of compatible primers scales approximately linearly with the primer
length [23]. We empirically tested the same methodology [23] on
primers of length 30, and we managed to find only around 10K
primers that meet the requirements, which hardly justifies the addi-
tional synthesis cost of the longer primers, paid for every individual
molecule.

While it is quite impressive that, unlike any other device, DNA
can natively support the object storage semantics, we find that such
semantics is the root cause of the above problems. By allowing the
objects to be arbitrary in size, reliable retrieval of a small object in
a sea of giant ones becomes challenging and requires high Ham-
ming distance between the keys, as well as many cycles of PCR.
By designing the keys (i.e., primers) of all objects to be as distant
from each other as possible, the number of addressable objects is
drastically reduced, which in turn significantly limits the possibility
to build a functional storage system. Furthermore, the object-based
design results in a flat key-value store architecture, without any
logical order or distance metric between the objects, limiting se-
quential access to a single object and essentially degenerating it to
a random access. Apart from the above problems, the object storage
semantics is largely unnecessary, as any storage system, including
object storage, can be implemented on top of a block device.

This work proposes a novel and flexible DNA storage architec-
ture that offers the block storage semantics, where each block can
be independently read and written to, and a group of consecutive
blocks can be efficiently retrieved. In contrast to prior work, in our
architecture, a pair of primers of length 20 do not define a single
object, but an independent storage partition, which is internally
blocked and managed independently with its own index structure.
We make the observation that, while the number of mutually com-
patible primer pairs is limited, the internal address space available
to any pair of primers (i.e., partition) is virtually unlimited. We
expose and leverage the flexibility with which this address space
can be managed to provide rich and functional storage semantics.
Furthermore, to leverage the full power of the prefix-based nature
of PCR addressing, we define a methodology for transforming an
arbitrary indexing scheme into a PCR-compatible equivalent. This
allows us to run PCR with primers that can be variably extended
to include a desired part of the index, and narrow down the scope
of the reaction to retrieve a specific block or a range of blocks with
sufficiently high accuracy.

In this paper we make the following contributions:

• We expose the flexibility and constraints in the manage-
ment of the internal address space for any pair of primers,
and show that significant functionality can be achieved at
negligible losses in information density. We show that this
flexibility can be leveraged to implement the block storage
semantics.

• We define a methodology for designing PCR-compatible in-
dexes to enable random access with primers that can be
elongated to include a variable portion of the index, called
elongated primers, enabling sufficiently reliable random ac-
cess to individual blocks and sequential access to consecutive
blocks.

• We provide efficient support for data updates in DNA stor-
age by organizing the partitions similarly to version control
systems; this style of updates obviates the need for complex
chemical edits of DNA molecules and avoids their limita-
tions, and allows for efficient retrieval of updated data, while
adhering to the block storage semantics.

• Our wetlab evaluation using the state-of-the-art DNA stor-
age architecture [23] demonstrates the practicality and preci-
sion of our random access with elongated primers, in which
we were able to reduce the sequencing costs by ∼140x. We
further demonstrate the practicality of the proposed data up-
date approach, by synthesizing several DNA update patches
with carefully engineered addresses, and carefully mixing
them with the original data. We then show that in one round-
trip to DNA storage we can precisely retrieve (and later suc-
cessfully decode) a small part of data that experienced up-
dates, with minimal sequencing of unrelated data and unre-
lated updates.

The rest of the paper is organized as follows. Section 2 covers
the background information about DNA storage. Section 3 analyzes
trade-offs in internal address space management of a single par-
tition. Section 4 describes the random access to individual blocks
and sequential access to consecutive blocks. Section 5 describes
existing approaches to enabling updates in DNA storage, discusses
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Figure 1: a) Structure of a DNA molecule in DNA-based stor-
age [23], b) layout of an encoding unit with an outer ECC
code [23], and c) layout of data and ECC molecules within
an encoding unit, layed out as a matrix.

the trade-offs involved, and presents our solution that aligns with
the proposed block semantics. Sections 6 and 7 describe our exper-
imental methodology and the results of our wetlab experiments,
respectively. Section 8 describes our data decoding algorithm. We
discuss the related work in Section 9 and conclude in Section 10.

2 BACKGROUND
2.1 DNA Storage Basics
The key enabler of DNA-based storage systems is a chemical process
called artificial DNA synthesis, widely available as a commercial
service. The process can create an arbitrary sequence of {A, C, G,
T} bases, which may or may not have biological meaning. While
natural DNA molecules in living cells tend to be huge and carry
all of the organism’s genetic information, the artificial molecules
produced by the current synthesis technologies are limited to a
few hundred bases in length. Although it is possible nowadays
to synthesize DNA molecules that are over 1000 bases long [33,
42], the quality assurance costs increase sharply beyond a few
hundred bases, and the yield decreases significantly. Given that
a DNA molecule that is 300-base long can store at most 75 bytes
of information, storing large files requires breaking them down
into smaller pieces that fit into shorter molecules. Some form of
an internal address, also called an index, must also be added to
each piece of data, i.e., it must be embedded into every molecule, to
allow for eventual reassembly of the original data from the pieces [6,
15, 23]. Figure 1a shows the structure of a DNA molecule in the
state-of-the-art architecture [23] with an internal address.

2.1.1 Encoding. To be stored in a DNA format, pieces of binary
data must be first encoded into a series of {A, T, C, G} bases (nu-
cleotides) or using one of many available coding schemes. Some
coding schemes tend to sacrifice the coding efficiency to adhere to

rules that help with the success of the chemical processes in the
pipeline. For example, they may try to prevent the occurrence of
long stretches of homopolymers (repeating bases, e.g., AAAA) in
order to make the sequencing process easier [23]. Other coding
schemes try to balance the GC-content in order to make the DNA
synthesis more successful [33, 42]. This type of coding is known
as constrained coding, and is employed by most of the early work
on DNA storage [4, 6, 11, 12, 22, 26, 27]. In contrast, unconstrained
coding does not seek to exclude any particular sequences, and it
often employs simple data randomization, which ensures that long
homopolymers occur with low probability and the GC-content is
balanced on average [39]. Unconstrained coding significantly in-
creases the coding density, while relying on conventional error
correcting codes to handle all error types. In this work we employ
unconstrained coding, assuming a simple mapping of two bits per
base, which achieves the maximum information density, while we
handle all error types efficiently using outer Reed-Solomon ECC
codes [20, 23]. This approach has been shown to lead to much
higher information density for practical ranges of error rates [39].
However, to encode the internal addresses within every molecule
(more specifically, the yellow part in Figure 1a), we use a more
complex constrained coding scheme that allows us to implement
the block storage semantics (Section 4).

Once a file has been split into pieces and encoded into DNA
strings, a pair of special identifying sequences called primers are
added to the beginning and end of each string. These primers consti-
tute a chemical tag that logically groups related molecules together,
as shown in Figure 1a, allowing for random access. The tagged
sequences are sent for a commercial synthesis service, whereby
millions of physical copies of each DNA string are synthesized
together and stored in the same DNA pool (e.g., in a test-tube).

2.1.2 Data Retrieval. To access a file stored in a DNA pool, the
molecules containing individual pieces of the desired file need to be
read through a process called DNA sequencing. To isolate the target
molecules to be sequenced, the PCR reaction is used to selectively
amplify (i.e., exponentially multiply) the molecules containing the
file pieces. These molecules are isolated using their primers. Once
the target molecules are amplified, they are sequenced using one of
many available sequencing technologies. The sequencing produces
many DNA strings, often called reads. The synthesis, storage, wet-
lab manipulation, and sequencing processes often result in errors
that manifest themselves in the final reads when compared to the
originally encoded DNA molecule [18]. The average number of
reads per original synthesized molecule is called sequencing cover-
age or sequencing depth. The higher the coverage for a molecule,
the easier it is to reconstruct it from these reads, but also the higher
the cost of sequencing.

The obtained reads that contain the correct primers are then
clustered based on similarity such that each cluster ideally consists
of all reads originating from the same encoded DNA molecule. The
similarity metric typically used for clustering is the Levenshtein
(edit) distance [20, 23, 28], defined as the minimum number of
insertion, deletion or substitution operations required to convert
one string to another. Each cluster contains noisy copies of the same
original DNA string, which is then extracted from each cluster using
one of many consensus finding algorithms [5, 20, 23, 29, 30, 42].
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Figure 2: Three steps of a PCR cycle that double the number
of desired molecules.

2.1.3 Decoding and Error Correction. After clustering and find-
ing the most probable original strand for each cluster, the ob-
tained strands are decoded back into binary data. Using the in-
ternal address information stored in each strand, the binary data
is used to recreate the original file by reordering the pieces. Any
errors left over from other steps in the pipeline are corrected us-
ing error-correction codes, typically outer Reed-Solomon or LDPC
codes [14, 23]. These schemes group a larger number of molecules
(tens of thousands [23]) into encoding units, to enable erasure-
coding in case of losses of entire molecules, and to amortize the cost
of error correction over a larger set of data. For example, the state-
of-the-art architecture [23] treats all DNA molecules as columns
in a matrix, as shown in Figure 1c. Separate DNA molecules are
then created as an external ECC code, such that one codeword
represent a row in this matrix (the row in red in Figure 1c). While
this type of coding achieves high information density, it creates
strong inter-molecular dependencies across thousands of molecules,
which make data edits extra challenging.

2.1.4 PCR. PCR is a cyclical reaction that doubles the number of
the desired molecules (also known as target molecules) in every
cycle, as illustrated in Figure 2. All reagents are put into a test-
tube, which is then closed and exposed to different temperatures
in a programmable manner. A PCR cycle contains three phases,
defined by the temperature: 1) denaturation, which happens at 95◦C
and breaks a double-stranded molecule into two single-stranded
ones, 2) annealing, which is the binding of primers to the target
molecules, and happens at the temperature of 48-68◦C, 3) extension,
which creates a double-stranded molecule between two primers
and happens at 68-72◦C.

The optimal primer length for PCR is considered to be around 20,
which provides the optimal conditions for binding (annealing) of
the primers to the target molecules [10]; primers of length 20 anneal
at 50◦C and do so efficiently, whereas longer primers anneal less
efficiently and at higher temperatures. However, PCR with primers
of length 40+ is routinely done in biological applications [10, 16]
and in most sequencing protocols [2], and the maximum length
of the primers was recently found to be above 100 [35]. Therefore,
in a DNA storage system, one could in theory retrieve individual
molecules using PCR, as each molecule contains a unique prefix
consisting of its primer and the full internal address; the full prefix
would be used as the forward PCR primer. Unfortunately, the inter-
nal addresses can be very similar to each other, they don’t have a
balanced GC content, and they may have a very long stretches of

repeated bases (homopolymers), and PCR with such primers easily
fails [2, 10].

2.2 Existing Data Update Mechanisms
DNA-based data storage is largely assumed to be read-only [6] due
to impracticality of updating already created DNA molecules. How-
ever, multiple techniques for in-situ alterations of DNA molecules
have been proposed as a mechanism for rewriting data stored in
DNA and have been tested in simple proof-of-concept setups [21,
25, 33].

Direct edits of DNAmolecules were proposed as the first method
to support updates in DNA, and the proof of concept was suc-
cessfully demonstrated on a single long DNA molecule [33]. This
method effectively cuts out a fragment of DNA that needs to be
updated and pastes a new one using overlap-extension PCR. More
recently, strand displacement technology has been used as an edit
method [21], with multiple simultaneous single-molecule edits in
the same cycle. Both processes are chemically complex and could
be risky, as they may cause accidental modifications of other data
in sufficiently large DNA pools.

However, a bigger problem with both technologies is that they
are limited to updates within a single molecule and can be applied
only when the size of the data does not change as a consequence of
the update. The state-of-the art organizations of DNA storage [23]
assume that data is split across many molecules, interleaved in
multiple ways across an even bigger set of DNA molecules (e.g.,
to efficiently implement error-correcting and erasure codes, like
in Figure 1c). This creates significant inter-molecular data depen-
dencies that make the use of molecular editing impractical without
breaking the structure of surrounding data, or even impossible
when the size of the data changes.

Instead of encoding data as nucleotides in DNA strands, recent
work has proposed storing data as nicks in the DNA backbone [25,
32]. One advantage of thismethod is that these nicks can be repaired,
and then reapplied, making the data storage system rewritable,
although one must erase the data in the entire pool in order to
rewrite it. However, adding nicks to DNA strands means that one
cannot perform PCR on them, sacrificing random access and the
ability to read data using next-generation sequencing. Importantly,
the storage density of this approach is 50-fold lower compared
to storage of data as nucleotides [32]. Given the above, such an
approach is more appropriate for storing small metadata associated
with the entire DNA pool as a whole, rather than the data itself.

3 MANAGING INTERNAL ADDRESS SPACE
To understand the trade-offs involved in the management of the
internal address space, let us quantify the storage capacity and
information density of a DNA storage partition defined by a pair
of primers of length 20. Let’s assume that the length of the DNA
strands is 150, as in our wetlab experiments. Figure 3 shows the
storage capacity (blue, left y-axis) and the information density (red,
right y-axis) as a function of the index length L. Note that the
maximum storage capacity of 2217B is achieved when the entire
available portion of the strand is used for indexing; in that case
there is no space for data within the molecule, but the presence



Efficiently Enabling Block Semantics and Data Updates in DNA Storage MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

world’s data in 2023
0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

Bi
ts

 P
er

 B
as

e

Ca
pa

ci
ty

 in
 B

yt
es

 (l
og

2)

Index Length

Capacity in bytes, primer length 20 Capacity in bytes,  primer length 30
Bits per Base, primer legth 20 Bits per Base, primer length 30

Figure 3: Storage capacity (bytes) of a single partition (blue)
and information density (red) as a function of the index
length. Dashed lines correspond to design with primers with
30 bases.

of a molecule is treated as 1, and the absence as 0, and this single-
bit value is assigned to the internal address, of which there are
4110=2220. This design however has extremely low information
density: only one bit per strand of 150 bases.

In contrast, the density is the highest when there is only one
molecule which requires no index at all, so the entire strand can
be used for data. However, this density is achievable only for tiny
objects. Also note that designs with primers of length 30 (dashed
lines), although achieving lower storage capacity, still have enor-
mous capacity that greatly surpasses the current amount of data in
the world. While longer primers do reduce the information density
significantly, this loss diminishes linearly with longer strand length.

3.1 Partition Architecture
The address space AAA...AAA to TTT...TTT with an index of length
𝐿 can be represented as a prefix tree, shown in Figure 5a, which
represents the hierarchy of addresses within a partition. Every non-
leaf node in this tree has four edges labelled A, C, G, T, in that
order. Every leaf represents one DNA strand, whose full internal
address is determined by the path from the root to the leaf. For
example, the left-most leaf would be AAA....AAA (𝐿 characters),
and the right-most leaf would be TTT...TTT.

When this tree is balanced and full, i.e., when all DNA strands
have the same index length and all indexes are present, then the
maximum information density is achieved [15]. In such a design, an
index of length 𝐿 covers addresses from AAA...AAA to TTT...TTT,
which are treated as a 1D array of 4𝐿 fixed-capacity storage units [6,
20, 23]. The size of the unit corresponds to the payload of one
molecule. An important observation about this architecture is that
any contiguous byte-range can be statically mapped to a contiguous
index-range and vice versa, just like in block storage. A contigu-
ous index-range, in return, can be precisely described with a few
prefixes, or less precisely with their longest common prefix. For
example, range AAA to AGT can be precisely described with the
following set of prefixes: AA, AC, AG. The longest common prefix
is A. However, the set of data covered by prefix A also includes AT,
on top of the desired range AAA to AGT.

An important implication of this observation is that any con-
tiguous range of bytes within a partition, which could correspond
to an object of any size or a set of contiguously stored objects,
could be retrieved quite precisely with a single PCR, if the primers
were extended to include a part of the index, assuming that the
index complies with PCR primer design constraints. In Section 4
we discuss how to make indexes PCR-compatible through sparse
encoding of indexes. Also note that in order to improve the effi-
ciency of sequential accesses, a set of files could be mapped onto
the partition in a manner that tries to optimally align the files to
nodes in the prefix tree, which we leave for future work.

3.2 Concentration constraints
To manage the cost of sequencing, every strand in DNA storage
should ideally be represented in approximately equal concentra-
tions. Otherwise, highly concentrated strands will be sequenced at
much higher coverage than needed, while other strands will need
much more sequencing to be represented in the readout, wasting
the sequencing resources. Furthermore, for our random block ac-
cess to work, it is essential that the desired sequences are amplified
stronger than other sequences that may be wrongly amplified due
to the similarity in the index. Otherwise, strands with an index
similar to the desired index may become dominant. Even worse,
PCR may overwrite their index to the desired index if the indexes
are too similar, resulting in its exponential amplification, a situation
called mispriming. In that case, we may have multiple data candi-
dates that present themselves with the desired index, and we may
not be able to decide correctly which one is the actual target. For
example, assume two strands with very similar indexes I1 and I2,
and payloads P1 and P2, and we want to amplify strand (I1, P1). The
dominant strands in the outcome could be (I1, P1), which is correct,
and (I1, P2), which is a false positive. To ensure the dominance of
the desired strands in the presence of similar targets, it is sufficient
to ensure that the closest targets in the pool are not present in
higher concentration compared to the actual target [2, 7]. Applying
this rule transitively implies that all the nodes in the same level of
the index tree map to the similar number of DNA strands and in
similar concentrations. This is trivially ensured in the our partition
architecture, however, we need to ensure that data updates do not
compromise this balance of strands and their concentrations.

4 RANDOM BLOCK ACCESS
In this section we describe the methodology for creating a PCR-
compatible indexing scheme for an index of length 𝐿. This allows
us to perform precise random access with primers elongated to
include a desired portion of the index. Figure 4 shows how strands
with elongated primers generated following our methodology look
in comparison with the baseline from prior work [23].

4.1 General Approach
Given that every molecule contains a unique prefix consisting of
its primer and the full internal address, one could in theory re-
trieve each molecule individually using PCR, if the forward PCR
primer included the full molecule prefix. Unfortunately, indexes
AAA...AAA to TTT...TTT are not PCR-compatible, as they don’t
have a balanced GC content, they may have very long stretches
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Figure 4: The structure of a DNA strand that supports PCR
with elongated primers (bottom) as compared to prior work
(top). Note that the primer can be elongated fully (covering
the entire yellow part) or partially. PCR with partially elon-
gated primers enable limited forms of sequential access.

of repeated bases (homopolymers), and, can be too similar to each
other. The main limitation of the indexes in prior work is that they
follow the maximum information density design, and as a conse-
quence we do not have any control over their structure. Our main
idea is to use less dense encoding of indexes, which will give us
the opportunity to introduce the desired constraints on the index
structure, at a minor loss in information density. As a positive side
effect, the added sparsity also provides strong protection against
errors in the index, which is missing in the baseline design [23], as
shown in Figure 1c. Without loss of generality, we will illustrate
the procedure on an internal address space with 1024 leaf indexes,
which we use for our wetlab evaluation.

4.2 Requirements for Elongated Primers
It is important to emphasize that compared to the main primers
that define a partition, our elongated primers have slightly different
requirements because their usage and purpose is different. Namely,
every pair of the main primers must have a high mutual distance
so that we are able to extract the target partition regardless of its
size and concentration relative to other partitions. Assume that we
have two similar primers, 𝑃𝑎 and 𝑃𝑏 , that define two partitions A
and B. If the concentration of partition A is a million times lower
than B, than partition A cannot be reliably extracted [23, 36] using
primer 𝑃𝑎 due to the sheer size of B. However, within a partition,
we adhere to the constraint of uniform concentration of data within
the same level of the index hierarchy. As such, although our precise
PCR may amplify wrong data too, the target data is guaranteed to
be dominant. As such, ensuring a high distance between indexes,
although desired, is not as important as it is for the main primers.

Regarding GC content, our primers have slightly more restric-
tions. The reason is that our primers are not of fixed length; e.g.,
the main primer may be extended by 6 bases or 10 bases, and in
both cases it needs to have balanced GC content to be used as a
PCR primer [10]. In other words, the GC content needs to be bal-
anced within every part of every index regardless of its length, and
the only way to achieve this is to add sparsity to the indexes such
that the GC content is uniform within and across every possible
elongation. We next describe how to add sparsity in a way that dis-
ables long homopolymer sequences, while increasing the distance
between different indexes.
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Figure 5: Index-tree construction.

4.3 PCR-Navigable Index Tree
To preserve the hierarchical organization of indexes, any modifi-
cation to them must be done on the prefix tree that defines their
address space. Figure 5a shows the top two levels of such a tree,
where each non-leaf node has four edges labelled A, C, G, T, in
that order. Path AA in this tree corresponds to address 00, in base
4; AC corresponds to 01, while TT corresponds to address 33. Be-
fore we add sparsity to this tree, we first randomize the order of
edges coming out of every node, as shown in Figure 5b. Doing
so re-enumerates indexes randomly, such that the leftmost path
becomes CG and is assigned address 00. The reason for this is to
support incomplete, unbalanced, and degenerate trees by avoiding
situations where nodes with only one child have the single outgoing
edge always be labelled as A.

Next, to sparse out the addresses, we add an extra letter between
every two adjacent edges, as shown in Figure 5c. This allows us
to perfectly balance the GC content in all parts of the internal ad-
dress, as we always pick a letter of the opposite GC value from the
previous one. For example, if the previous letter on the path from
the root was A, the extra letter could be either C or G. We pick
the assignment that maximizes the Hamming distance between the
sibling nodes, breaking any ties randomly. The resulting internal ad-
dressing scheme guarantees near-perfect GC content in every part
of any index regardless of its length, while simultaneously disabling
sequences of homopolymers longer than two. Importantly, it also in-
creases the average Hamming distance between two indexes of the
same length by at least 2x, as well as the minimum Hamming/edit
distance between any siblings. In case of the two shaded nodes in
Figure 5a, AA and CA, which originally have Hamming distance of
1, after adding randomized sparsity, the two nodes become ACAC
and CTAG, which have Hamming distance of 3 (Figure 5c).
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The above indexing scheme also has cost, namely the space
occupied by the added bases. In our case, we use 10-base long
internal addresses of encoding units, instead of 5, which results in
3% information density loss assuming 150-base strands. However,
we believe this is a good trade-off as the added flexibility can be
used to reduce sequencing costs by many orders of magnitude. Also
note that this overhead reduces linearly with strand length and
would present only a 0.3% overhead with DNA strands of 1500 bases.
In contrast, using 30-base primers in the baseline architecture [23]
would lead to 22% loss in information density (2.2% with 1500-base
strands), and would only provide a negligible improvement in the
number of chemically addressable objects.

Note that the internal address organization of molecules within
an encoding unit (matrix) shown in Figure 1c (orange color) remains
the same, as there is no incentive to randomly retrieve only a subset
of a unit, given that the unit must be decoded as a whole. As these
addresses are distinguished in software, rather than chemically, the
basic addressing scheme provides the best information density for
that part of the address space.

4.4 Index Tree Management
Because of our primary reliance on randomization and deterministic
procedures in the construction of the PCR-compatible index tree,
we do not need to store the tree. We only need to remember the
seed used for the randomization of its construction. This seed is
stored/cached digitally, along with other partition-level metadata,
such as the seed used for data randomization which is used to
improve clustering [23, 28]. We use different seeds for different
partitions (i.e., primer pairs) to ensure that different partitions have
vastly different trees to avoid unwanted molecular interactions
between indexes of different partitions.

5 DATA UPDATES IN DNA STORAGE
The advances in low-latency enzymatic synthesis tailored specifi-
cally for DNA storage [19] and nanopore-based sequencing tech-
nologies [17], as well as the introduction of near-molecule compu-
tational primitives on top of DNA storage [3], have expanded the
potential applications of DNA storage beyond a simple read-only
archival medium. Unfortunately, simple key operations such as
updates are still not supported in a practical manner. In this sec-
tion, we discuss some naïve approaches to DNA updates, and then
present our proposal for updates in DNA storage with multiple
possible implementations.

5.1 Naïve alternative
A simple way to provide updates in the baseline architecture is to
create a brand new, updated copy of all the data that is tagged with
the same primer pair as the data that needs to be updated, then
tag the new copy with a new pair of primers, and simply disregard
the the old data, and notify the user/upper-level application of the
new primers. While conceptually simple, this approach suffers from
multiple big problems. First, it requires recreating from scratch the
partition, which could have an arbitrary amount of data. Given that
DNA synthesis is the most expensive process in DNA storage, this
clearly is not an acceptable solution. Furthermore, the old pair of
primers is wasted, as the old data with the old primers remain in

primer pair A

primer pair B

primer pair C

dedicated address space for all updates

0 4L - 1

Internal address space of size 4L, assuming L address characters

special 
primer pair

Figure 6: Logging all updates in a dedicated address space.

the sample; given how precious primers are, wasting one pair of
primers per update is clearly not a sustainable solution.

5.2 Our Approach: Versioning
To provide an effective solution for updates, we draw inspiration
from conventional data management systems, such as journaling
file systems and systems for versioning control, such as git. Instead
of in-situ chemical alteration of DNA molecules, in our proposed
architecture, updates are efficiently and durably logged as an or-
dered series of incremental patches. An update patch is synthesized
as a minimal set of DNA molecules that describe the update to be
performed on top of the original already synthesized data; these
additional molecules can be easily, safely, and precisely combined
with the original DNA molecules, provided that their concentra-
tion per molecule is similar. The actual application of updates is
delayed until the time of decoding, at which point the updates are
trivially and efficiently applied in software, obviating the need for
chemically complex data edits.

The versioning approach described above is applicable to any
type of data, as well as to any type of encoding, and poses no
limits on the number of updates that can be performed. However,
a number of important challenges remain. First, how should the
updates be tagged, i.e., what should be their primers and indexes?
What is the structure and semantics of update patches, and how
are they applied? How to link the data and its updates? How do
we efficiently retrieve the updated data? How do we physically
mix original DNA with update DNA, and in what proportions? We
answer these questions in the following subsections.

5.3 Placement of updates in the address space
Figure 6 shows a simple approach where all updates are logged
into a separate partition defined by a dedicated pair of primers. In
this scenario, all updates from all partitions are placed together in
the same address space. A minor problem with this approach is
that it requires a dedicated pair of primers for updates. A much
more serious problem is that reading any amount of data from
any partition in the same sample requires reading all the updates
that have ever taken place in any partition, only because the data
might have been updated. In the worst case, reading a small piece
of clean (never updated) data may require reading huge amounts
of update logs, of which none are related to the target data, which
is prohibitively costly and slow.
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Figure 7 shows an improved approach, where updates are em-
bedded into the address space of each primer pair. This way, the
updates related to different address spaces are separated from each
other, which means that reading updated data requires a single PCR.
The data part and the update part need to share the same address
space, which can be achieved in multiple ways. The most flexible
organization of the address space is shown in figure 7, where the
data and updates share the address space in a fashion similar to how
two stacks are placed in memory, i.e., growing towards each other.
This way, there is no need to statically partition the address space
into data part and update part, as both parts can grow dynamically.

While the improved approach in Figure 7 enables retrieval of
both data and updates in the same PCR reaction, this retrieval
would include all the data under the same primer pair, which can
amount to gigabytes or terabytes in practice. Our final approach
seeks to place the updates (in the address space) next to the block
they are supposed to update, and far from unrelated blocks, such
that a single precise PCR reaction as described in Section 4 can
retrieve the block together with all the updates that are related
it. Figure 8 shows how provisioning additional slots for updates
right after every data block can achieve the desired interleaving
of data and updates. The method basically spaces out data blocks
in the address space, to provisioning some address space for the
updates. In this example, address space slots for three update blocks
are provisioned for every data block. Some of these update slots
could be unused, while some data may require more updates than
it was statically provisioned for it in the address space. In the latter
case, the last update block will contain a pointer to an entry in the
common update log for updates needing more space.

The key advantage of the method in Figure 8 is that it ensures
that data and the corresponding updates have a common prefix,
and can be retrieved together in a single PCR. For example, assume
an object with prefix ACGT. At the expense of one extra base, the
systemwould store the original object as ACGTA, the first update as
ACGTC, second update as ACGTG, etc. This establishes an implicit

link between data and updates through the common prefix, and no
additional bookkeeping is needed. The user always uses the same
address ACGT to retrieve the object, and the system always uses
that prefix to perform the PCR. Such PCR will precisely retrieve
the original object and all the updates, and the system will know
the correct order of updates, which is sufficient to reconstruct
an updated object. Finally, by co-locating the data blocks with
updates in this manner, we limit the potential size and molecular
concentration imbalance between different blocks to at most 4x in
this example, assuming no differential coding of updates is used.

5.4 Structure and Semantics of Updates
Note that our system imposes no limitations on the structure or
the semantics of updates. Given our block semantics, the updates
could simply be in the form of a new block that entirely replace the
old one. However, to further minmimize the size of the updates and
the concentration imbalance they pose, we can encode the updates
as a differential patch to the original data. In the latter case, the
actual application of updates can even be delegated to the end-user
or the upper-level application, which would be most efficient to do
for data that is compressed in an application-specific manner. Our
wetlab experiments provide one simple example of a possible update
semantics that was appropriate in our miniaturized wetlab setup,
but many others are possible. Because of this flexibility and because
of lack of space, we do not analyze different approaches for creating
and applying patches in this work. Most DNA-storage systems will
have digital front-ends, which could buffer, coalesce, batch and
co-schedule minor updates (as well as cache hot data/metadata).

5.5 Physically Mixing Data and Updates
For efficient retrieval of updated data, it is important to ensure
that the original DNA data and the additional updates are mixed in
adequate concentrations, such that the average number of copies
of each molecule is as similar as possible in the original and update
DNA strands; the mismatch in concentrations will directly impact
the cost of sequencing. To understand why, let’s assume that in the
update sample the number of copies per molecule is 10 times higher
compared to the original sample. If we directly mix such samples,
then 90% of the sequencing output will be related to the update,
and only 10% will be related to everything else; that means that we
have to sequence ∼10x deeper than usual to retrieve the required
number of the original sequences, increasing the sequencing cost
by 10x. Similarly, if the updates are five times less concentrated
than the original, sequencing the updates from the mix would again
require about 5x higher sequencing coverage.

Ensuring the adequate concentrations may seem challenging, as
the original DNA and the update patch may come from different
DNA synthesis vendors, using vastly different synthesis technolo-
gies, with different yields and concentrations. For example, the
DNA patches that we ordered were small in terms of the num-
ber of distinct molecules and as such they were much cheaper to
synthesize using a different vendor. The new vendor, however, pro-
vided samples that were 50000x more concentrated compared to
the samples with the original data. Another issue is that the orig-
inal sample (or the update) may have undergone a series of PCR
amplification from the moment of synthesis, making the problem
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of concentration matching even more challenging. Fortunately, the
most basic wetlab tools and simple calculations allow us to match
the concentrations with remarkable precision. In subsection 6.4.2,
we describe two simple and successful protocols for mixing the
samples.

6 METHODOLOGY
As a proof of concept, we demonstrate the effectiveness and pre-
cision of our proposed read method with elongated primers, as
well as the update mechanism, through wetlab experiments. The
experimental details below are provided for reproducibility, and we
also plan to release our sequencing data to support research in this
area.

6.1 Input Data and Experiments
We encode 13 files into 13 partitions; 12 of these files simply present
unrelated data partitions in the same DNA pool. The last file is the
book Alice’s Adventures in Wonderland by Lewis Carroll, 150KB
in size, encoded with a separate pair of primers. The index space
of the last file is organized to be PCR-compatible with 1024 leaf
nodes, as described in Section 4. This file is split into about 600
equal encoding units (blocks), each having 15 molecules, 4 of which
are used for ECC. The binary size of each encoding unit is 256 bytes,
which is about the size of an average paragraph of text in the book,
and each unit is assigned to one leaf sequentially.

All 13 files were synthesized into DNA by Twist BioScience. We
then retrieve individual files as well as precisely retrieve certain
paragraphs from Alice’s Adventures in Wonderland using elongated
primers. We also achieve successful retrieval of multiple unrelated
paragraphs together in one multiplex PCR reaction. We then update
some paragraphs and retrieve them after the updates. Although
our experimental setup is miniaturized to allow for an inexpensive
demonstration, these experiments can be easily reproduced in sig-
nificantly scaled-up setups, where each paragraph can represent
an arbitrary type and amount of information. In our experiments,
each paragraph represents one block.

6.2 Storage Architecture
Our baseline DNA architecture is modelled after the state-of-the-
art architecture that has successfully demonstrated random access
among 200MB of data in DNA [23]. We use 150-base long DNA
strands [23], as we could synthesize those in the most cost-efficient
manner given the scale of our experiments. Out of 150 bases, 40
were used for a pair of main access primers. One A base was added
after the forward primer as a point of synchronization [23], leaving
109 bases for data (or ECC) and internal addresses.

The encoding unit size is defined by the size of the Reed-Solomon
symbols used. To reduce the cost of experiments, we use small 4-bit
symbols, which means that a codeword has 24 − 1 = 15 symbols,
i.e., the matrix in Figure 1c has 15 columns, 11 of which are data
molecules as in Figure 1a, and the remaining four are ECCmolecules
as in Figure 1b. The data part of a molecule contains 96 bases, which
is 24 bytes, so the entire encoding unit contains 264 bytes, 256 are
used for data and the remaining 8 bytes are randomly padded. For
more details on the ECC, please refer to the prior work [20, 23].

6.3 Indexing
For addressing within an encoding unit (i.e., matrix), we need only
two bases for that part of the index (the part colored in orange in
Figure 1), from AA to GG, which is enough to distinguish between
15 molecules in software. Although with our 600 encoding units we
need only 5 bases to densely encode the address space of 1024 units,
we use 10 bases to create a sparse GC-balanced and PCR-friendly
internal address of the encoding unit (the part colored in yellow in
Figure 1) and one base to support updates.

6.4 Updates
Every update is encoded as an encoding unit (matrix), similarly to
the data. In our proof-of-concept setup, our format of the updates
is very simple and consists of four parts. The first byte is an integer
that identifies the first byte in the block (encoding unit) where
deletion needs to happen. The second byte is a number that indicates
howmany bytes, starting from the one indicated by the first number,
should be deleted, if any. The third part contains an integer that
identifies the position of where an insertion should happen, after
the deletion is applied. The rest is an array of bytes that should be
inserted. Note that the block that needs to be changed is identified
by the internal address of the update patch: the data and the update
only differ in the last base.

6.4.1 Wetlab experimental setup. We synthesized six update patches
in total, to update six blocks. Three of them were synthesized by
Twist BioScience together with the original DNA, in the same pool.
The other three updates were synthesized by a different company,
Integrated DNA Technologies (IDT), as a separate DNA pool con-
taining 45 molecules, because the synthesis of a small update pool
was significantly cheaper at the second company. However, the IDT
pool was 50000x more concentrated compared to the original Twist
pool; the two pools therefore required careful mixing, which we
successfully achieved with remarkable precision.

6.4.2 Physical mixing of data and update pools. We performed two
different mixing protocols targeting two use cases. In one of them
we try to match the concentrations while taking data directly from
the synthesized pools. In the other, we first amplify the pools and
try to match the concentrations after amplification, to simulate the
situation where the original synthesized pools are not available.

In the first approach, which we name Measure-then-Amplify, we
generate the mix by measuring the concentration of the unampli-
fied Twist pool and IDT update pool and mixing the two pools
together with appropriate dilutions to ensure that an equivalent
amount of IDT sequences is added to the Twist pool. These were
then subsequently amplified (95◦C denaturation, 55◦C annealing
and 68◦C extension, 15 cycles), with the main partition primers to
generate the mixed pool.

In the second approach, which we name Amplify-then-Measure,
we initially amplify via PCR the initial Twist oligo pool using the
main partition primers. PCR amplification was conducted for 15
cycles (98◦C denaturation, 55◦C annealing, 68◦C extension). PCR
cleanup was performed (using the Geneaid Small DNA Fragments
Extraction Kit). IDT oligo pool was similarly amplified and cleaned
up. Concentrations of both pools were measured via nanodrop,
before mixing them both in concentrations proportionate to the
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(a) random access for the whole partition (b) random access for block 531 (c) random access for block 144

Figure 9: Distribution of blocks in the sequencing output after PCR-based random access with different front primers a) using
the main partition primer, b) using the elongated primer for block 531, c) using the elongated primer for block 144.

number of unique oligos in each pool (8850 for amplified Alice
pool and 45 for IDT update pool), ensuring an even distribution
of oligonucleotides without under- or over-representation of the
updated pool.

The evaluation of the mixing protocol is shared in subsection 7.6.
It should be noted that in this work we have merely used basic
chemical methods to clean samples and measure concentration.
There are many advanced ways to improve upon the efficacy of our
processes by using better PCR cleaning techniques [21] and more
precise concentration measurements [24].

6.5 Performing Random Block Access
Elongated forward primers (31-base long) for blocks 144, 307 and
531 were used together with the regular reverse primers (20-base
long) for initial amplification from the pre-amplified Alice partition.
Four PCR reactions were conducted. The first three utilized 144,
307 or 531 primers, one at a time, while the last utilized an equal
mix of all three for multiplexed amplification, with the total primer
concentration of the mixed pool being the same as in the case of the
single primer pair. Touchdown PCR was conducted to increase the
specificity of the amplification process, with a decrease of 1◦C per
annealing step in each cycle, starting at 65◦C, for 10 cycles, before
amplification at 55◦C and annealing for another 18 cycles. The GC
content of all primers is between 48-52%. The melting temperature
of the elongated primers is between 63-64◦C. To prepare the data
for sequencing, Illumina sequencing adapters were synthesized as
primers and appended to all sequenced pools via overlap-extension
PCR. Unique indexes were also added in this process to each sample
for demultiplexing. The final product was verified through Sanger
sequencing and subsequently sent for commercial sequencing with
Illumina NovaSeq.

6.6 Decoding
The sequencing output of every experiment is first clustered us-
ing a specialized clustering algorithm developed for DNA data
storage [28]. The resulting clusters were run through a two-sided
consensus finding algorithm [23], after which every molecule is
placed into an appropriate matrix, based on the internal address of
the matrix (yellow part in Figure 1) and the internal address within
the matrix (orange part in Figure 1). Every matrix is then decoded

and error correction is applied. Finally, updates, where they exist,
are trivially applied as per the instructions found in the decoded
update patches. A more detailed decoding procedure in the context
of our results is described in section 8.

7 RESULTS
7.1 Baseline Random Access
Figure 9a shows the number of reads in each block in the original
pool after a simple PCR random access using the main partition
primers, which among the 13 files amplifies only file 13 (Alice in
Wonderland). This is the conventional random access as per the
baseline [6, 23]. We show this figure to emphasize the fact that prior
to any precise reads, all molecules are represented fairly uniformly
in the DNA pool, with minimal bias (within 2x) coming from either
synthesis or PCR processes. Also note that three of the blocks (144,
307, and 531), seem prominent because they have about twice as
many molecules compared to other blocks, as they contain both
the original data and the updates that were synthesized together.

Cost Implications. Assuming that the user wants to retrieve
updated block 531, the above approach produces a sequencing
output with 99.66% of unwanted data, and only 0.34% of wanted
data, i.e., block 531. As the sequencing cost is charged per byte
of sequencing output, 99.66% of that cost will be wasted due to
poor selectivity of the random access. In other words, to retrieve 𝑥
amount of block 531, the baseline system has to sequence 1/0.34% =

293𝑥 of unwanted data. This cost can only be reduced if the sample
sent for sequencing includes less of unwanted data, i.e., if the target
data is more selectively amplified.

7.2 Random Block Access
Figure 9b shows the results after precise random access for block
531 (plots for other amplified blocks look similar and are omitted
for brevity). Before plotting this figure, around 18% of reads were
discarded as they were amplified by the leftover main primers from
the previous reaction. The remaining 82% had the correct target pre-
fix for 531. However, only 59% of those actually are copies of block
531; the remaining 41% originate from a handful of other blocks
that were promiscuously amplified through mispriming, as their
index partially overlaps with the index of 531. Section 8.1 discusses
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how to detect and handle incorrect amplification. Nevertheless,
the target amplification was strong enough that the target can be
clearly identified, with 0.82 × 0.59 = 48% of the reads mapping to
the target.

7.3 Sequencing Cost Reduction
The ability to retrieve individual data blocks has a huge impact on
the sequencing cost. Conceptually, the sequencing cost is always
proportional to the size of the sequencing output, regardless of the
sequencing technology. Thus, sequencing a specific block reduces
the cost linearly as compared to sequencing the entire partition.

In our specific experiment, to read 𝑥 amount of block 531 (at any
desired coverage), the baseline system has to sequence 1/0.34% =

293𝑥 of unwanted data, while in our case only 1/0.48 − 1 = 1.08𝑥
of the sequenced data is unwanted. This reduces the sequencing
cost (293 + 1)/(1.08 + 1) = 141 times, regardless of the sequencing
technology used! Our experimental results match these calculations
and are discussed further in section 8.

7.4 Sequencing Latency Reduction
Apart from reducing the cost of sequencing, the ability to select a
given block also reduces the sequencing latency. The reduction in
latency, however, can be dependent on the partition size and the
sequencing technology used, which we further explain.

The duration of a single next-generation sequencing (NGS) run
is fixed by design. For these machines, the sequencing output is
available only at the end of the sequencing run, which takes a fixed
amount of time and produces an output containing a fixed number
of reads. Thus, for small partition sizes that fit into a single sequenc-
ing run, the reduction in the sequencing latency is conceptually
impossible. However, if the amount of data in a given partition
is huge, multiple sequencing runs may be required to sequence
all the molecules at a sufficient coverage in order to decode the
entire partition. For example, one run of Illumina MiSeq can only
produce around 1GB of user data in the best case. Sequencing a
partition of 1TB would therefore require ∼1000 runs. However, in
our block-based architecture, retrieving a single block instead of
the whole partition would proportionately reduce the number of
sequencing runs needed (in our case ∼141 times), providing a linear
reduction not only in the cost, but in the retrieval latency as well.

In case of Nanopore sequencing, runtime of a single sequenc-
ing run is always output-size-dependent and ranges from several
seconds to several days; the output is continuously produced and
analyzed in real-time, and the sequencing can be stopped once the
data is successfully decoded [38]. Therefore, the latency of retriev-
ing a block through Nanopore sequencing would always be reduced
linearly compared to retrieving the entire partition, regardless of
the partition size. In our case, this means that the latency of re-
trieving block 531 would be reduced ∼141 times compared to the
baseline that retrieves the entire partition.

Regardless of the sequencing technology used, the post-sequencing
data movement and software decoding time will also be reduced to
a certain extent in the case of block-based DNA storage. However,
we do not quantify those as they do not represent a bottleneck in
the retrieval process [8].
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Figure 10: Mixing Outcome: The number of original and up-
date molecules in paragraphs 243, 374, and 556 after mixing
with the original pool using Amplify-then-Measure.

7.5 Cost of Creating and Retrieving Updates
For the baseline system that supports updates, we assume the naïve
system described in Section 5, which creates a new updated copy
of the entire partition and assigns a new primer to it. We evaluate
two aspects of the updates: the synthesis cost of performing the
update on a block, and the sequencing cost of reading an updated
block.

The cost of updating block 531 in the baseline includes synthe-
sizing the entire new partition (8805 molecules), whereas in our
system it requires the synthesis of 15 molecules of updates, which
is a reduction of approximately 580𝑥 . To read the updated block
531 at any given coverage, the baseline system must read the entire
partition and discard most of the readout, whereas our system can
perform the precise access that retrieves both data and updates
related to block 531 (30 molecules in total) as shown in Figure 9b,
discarding only about 50% of reads and reducing the sequencing
cost for updated data by approximately 0.5 ∗ (8805/30) = 146x.

7.5.1 Other Costs. Note that, apart from the synthesis and sequenc-
ing costs, the naïve system has other hidden costs. First, it reduces
the storage density of the system by keeping a full copy of both
the old and the new data. Second, it requires a new pair of main
primers for each update. Finally, it must notify the end user or the
upper layer in the hierarchy about the change of primers of the
updated object. Our solution successfully eliminates all of these
costs.

7.6 Mixing Data and Updates
In our experiments, we attempted to update 6 of the 587 blocks
in the DNA pool. We were able to successfully retrieve the data
with all 6 blocks updated, including the 3 updated blocks in the
IDT synthesis batch that were synthesized later and mixed with
the original data.

Figure 10 compares the number of original and update molecules
in paragraphs 243, 374, and 556, which were updated separately,
after mixing them with the original pool using the Amplify-then-
Measure approach (the Measure-then-Amplify numbers are similar
and thus omitted for brevity). In both approaches, we were able to
mix the original and the update pools in a way that matches the
concentrations quite well, despite their enormous initial difference
in concentrations, with some natural variation as seen in Figure 9a.
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This demonstrates the ease and practicality of mixing two samples
in appropriate concentrations with high precision, which allows us
to keep the cost of sequencing for updated data at the minimum.

7.7 Scalability and Limitations
7.7.1 Block Count. Our wetlab results show that elongation of
the front PCR primer can provide at least 1024 blocks that can be
individually addressed with a tolerable level of mispriming. How-
ever, when using our proposal, one should opt for extending both
primers instead of one. Such an approach would require splitting
the index into two parts, and each primer would be extended by
half the length of the index. We believe that the PCR efficiency and
specificity would be significantly improved due to lower and more
balanced melting temperatures of the two primers [2]. Note that
two-sided extension by 10 characters would create over a million
(10242) addressable blocks in a single partition, which is of the
same order of magnitude as the number of pages in memory or
blocks in modern SSDs. The reason we demonstrated single-sided
extension is that we wanted to stress-test and analyze long primer
extensions in a cost-efficient manner.

7.7.2 Block Size. An important observation is that the amount
of mispriming does not depend on the block size; mispriming is
dependant only on the number of blocks and the structure and
sparsity of their indexes. While the block size in our evaluation is
only 256B, it is important to note that there are virtually no limits to
its size. In fact, the way to scale the partition capacity is by scaling
the block size.

7.7.3 Partition Count. Directly performing a PCR reaction with an
elongated PCR primer using a sample that contains many partitions
may cause additional mispriming, as some indexes from unrelated
partitions could be accidentally similar and may bind together. To
avoid this problem, we suggest a two-stage PCR protocol, in which
we first add the main primers to isolate the target partition, and
after a number of cycles, add the elongated primer and continue
with the PCR to isolate the target block. A similar approach has
been done with nested primers [37].

7.7.4 Management of Elongated Primers. In our experiments the
elongated primers were synthesized from scratch by a commercial
vendor because of convenience and price. However, in a production
system the synthesis of elongated primers can be done by continua-
tion of synthesis on top of the existing main primer, saving on time
and cost. Note that we suggest lazy, on-demand primer elongation,
i.e., only for blocks that are actually demanded, rather than upfront
for all possible blocks. In all storage systems the popularity of ob-
jects follows the Zipfian distribution, where many blocks are never
accessed, and a few are accessed very frequently. Those accessed
frequently will pay the price of primer elongation only once and
amortize the cost over the subsequent requests. A potential prob-
lem is the physical management of too many primer elongations.
One solution is to limit the number of elongated primers stored per
partition (e.g., keep up to N most frequently requested elongations
per partition, discard the rest).

8 DECODING PROCEDURE
After performing PCR using elongated primers, we can recover our
target block with very few reads. With just 225 sequenced reads,
we successfully decoded both the original block and the updated
block using the following procedure: 1. We first search for the elon-
gated forward primer and reverse primer of our target block in
our reads and extract the substring between them as the payloads.
2. We then cluster these payloads as per Rashtchian et al. [28] so
that the payloads from the reads of the same original strand are
clustered together. 3. In the descending order of the cluster sizes,
we perform trace reconstruction using double sided BMA algorithm
as described in Lin et al. [20] until we have a reconstructed strand
for every address within the original block and any updated ver-
sion, if present. We discard any reconstructed strand that has the
same address as a previously recovered strand. 4. Once we have
a reconstructed strand for every address within a block, we can
decode our original data from these reconstructed strand. If there
are any errors remaining, we can correct them by utilizing the error
correcting codes.

In our experiment, we targeted and recovered block 531 in file 13.
This block had an original version and one update, which were both
recovered. Both the original and updated version had 15 strands
each. In order to recover all 30 strands, we had to perform trace
reconstruction on the first 31 largest clusters. The reconstructed
strands were 100% accurate, and no error correction needed to be
used to fully decode the data. In contrast, to recover the same block
and update prior to performing precise PCR, we needed to sequence
around 50000 reads, out of which only 30/8850 = 0.34% are useful
reads of our target block and its updates. (We have 8805 strands for
587 blocks along with 45 strands for three updates in our solution,
prior to PCR. Our target block and update consists of just 30 out of
these 8850 strands.)

8.1 Handling of Mispriming during PCR
While during our experiment we were able to recover the target
blocks using our decoding procedure, it should be noted that it can
be thrown off by the process of mispriming. When we perform
PCR using our elongated primers, not all the strands amplified
are from our target blocks. As shown in Figure 9b, a fraction of
the amplified strands belong to other blocks that have had their
primers overwritten by the target primer, but they retain their
original payloads. Upon examining these promiscuously amplified
strands, we observed some common properties that we should avoid
when designing indexes.

The incorrectly amplified strands largely had indexes that were
very close to the indexes of our target block in edit distance, rather
than Hamming. They were observed to be usually 2 or 3 edit dis-
tance apart. The ease of decoding a block mostly relates to the
number of other indexes within this edit distance radius.

We observed that when the target block had an index that was
close to the indexes of very few other blocks in edit distance, a
smaller percentage of the amplified strands were incorrect. Such
blocks are relatively very easy to recover and require very few
strands to be sequenced for full recovery.

In a situation where the target block has a strand with very
few strands in the initial solution, there is a possibility that after
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PCR, clustering and reconstruction, a misprimed strand might be
mistaken for the original strand. This risk increases if themisprimed
strand had higher concentration in the original pool. In this scenario,
the target block would have a recovered strand that is entirely
incorrect.

To an extent, such an error can be corrected using error cor-
rection codes. However, if the sequencing is of poor accuracy and
we wish to preserve our ECCs to handle other types of errors, we
can use a more computationally expensive method to handle this
situation. In step 3 of our decoding procedure, we can keep recon-
structing the strands from the largest clusters in descending order
of cluster size, until we have multiple candidates for some of the
indexes. Once we have these candidates, we can recursively try
to decode the original data using each of these candidates, until
we correctly recover our data. This is computationally inexpensive
if the number of candidates and number of incorrectly recovered
strands remains small.

9 RELATEDWORK
Increasing the number of unrelated addressable units (partitions) is
a very important problem in DNA storage. A recently proposed so-
lution uses nested PCR, in which two forward primers are encoded
in every strand and two PCRs are performed back-to-back, with the
2nd forward primer inserted in-between [37]. This is achieved with
a minor accuracy loss and a loss in information density. Another
recent work allowed objects to share one primer (with some restric-
tions), but not the other, which increases the number of unrelated
addressable units at a minor loss in PCR accuracy [41]. Both of
these approaches are orthogonal to and compatible with ours, as
they seek to increase the number of partitions, while we look at the
partition architecture. Unlike our approach, none of these works
support multiplex-PCR, because the same primer is shared by many
files. One advantage of both prior approaches is that a reasonably
sized library of primers can be pre-synthesized, and when reading
data, combinations of these primers can be used for PCR to access
different files. In our approach, each block has its own unique elon-
gated primer, which is synthesized on demand. The large number
of individual blocks in our approach means that it is unrealistic to
maintain a pre-synthesized library for all of them.

Apart from increasing the number of addressable objects, nested
primers [37] effectively create a two-level hierarchy. While this
approach results in less noise compared to ours, its synthesis over-
head in terms of the number of extra bases is 4x higher than ours
(we need 5 extra bases for the sparse index, whereas nested PCR
requires 20 bases for an extra primer). At the same time, our ap-
proach establishes a deep and narrow six-level hierarchy between
the blocks that gives us the ability to perform sequential access,
with only 5 added bases. The 5 added bases further contribute to the
reliability of the index. To achieve the same depth of the hierarchy,
nested primers would need 6 front primers, which would reduce
the information density by at least 10x in our setup with strands of
length 150. However, the advantage of nested primers is that each
addressable unit can be arbitrary in size.

Elongation produces an exponential number of block addresses.
For example, our elongation by 10 bases produces 210=1024, simi-
lar to one level of primer nesting that requires 20 bases. Thus, in

terms of sheer addresses per base, elongation produces more of
them. However, these addresses are not directly comparable, as
elongation-produced addresses must map to a fixed amount of data
(convenient for blocks), whereas nesting can handle arbitrary data
sizes (convenient for partitions). Thus, if a very high number of
partitions is needed, we suggest nesting, whereas elongation should
be used for dividing a partition into blocks.

Recent work leverages molecular promiscuity by encoding one
set of data with the main 20-base primer, and an additional set
of data with a different primer, minimally-distant from the main
primer [36]. By tweaking the PCR conditions the authors show
that it’s possible to amplify data tagged with the minimally-distant
primer on top of the main data, implementing a subset/superset
relationship. A problem with this approach is that the data targeted
by promiscuous PCR conditions must be present in significantly
larger concentration compared to data targeted by the stringent
PCR conditions [36], which significantly reduces the information
density. Additionally, it may be impossible to distinguish between
the two sets of data given the similarity of their primers, as the
main primer may overwrite the similar primers during PCR, as it
was the case in our experiments. However, our work could benefit
from the control of PCR stringency by adjusting the concentration
of magnesium chloride and potassium chloride [36] to reduce the
noise.

10 CONCLUSIONS
In this paper, we proposed efficient support for block storage se-
mantics with updates in DNA-based data storage, as well as some
forms of sequential access. We showed that the internal address
space given to any pair of PCR primers can be organized in a way
that enables random access to smaller units of fixed size. This is
achieved by extending the forward PCR primer to include a part of
the internal address to narrow the scope of the reaction, avoiding
replication of undesired data and reducing the cost of sequenc-
ing by orders of magnitude. We also demonstrated that updates in
DNA storage can be easily supported using an approach similar to
versioning in conventional systems. In our proposed system, the
updates are durably logged as synthesized DNA patches, which can
be safely and precisely mixed with the original data, delegating the
application of updates to software and avoiding chemically complex
and risky direct edits of DNA molecules. Finally, we demonstrated
that updates can be carefully integrated into the internal address
space in a way that allows for retrieval of desired data and the
related updates in one PCR reaction, which is particularly impor-
tant for slow storage media such as DNA, where an extra level of
indirection cannot be afforded.
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