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Abstract—With the amount of data being generated every year
increasing exponentially, figuring out where and how to store
it efficiently and inexpensively is becoming a larger problem
every day. The rapid improvement in performance and cost of
DNA synthesis and sequencing methods has led to an increased
interest in the use of DNA as a durable and compact medium
for data storage. Today, we have a large spectrum of available
chemical tools that enable efficient data access and manipulation
of in-DNA data. While several DNA storage architectures have
been proposed, there is no open-source codec or simulator that
implements all of the required components of the DNA-based
data storage pipeline for research and development.

We present an open-source end-to-end DNA data storage toolkit
that can take an input file through the entire DNA storage
pipeline. Our work contains implementations of the state-of-the-
art techniques for each step of the pipeline, including our own
algorithms for each step. These steps include encoding data into
DNA strands, simulating the wetlab processes of synthesis, storage
and sequencing of those DNA strands, clustering of the sequenced
results, reconstruction of DNA strands from noisy clusters, and
decoding the initially encoded file with support for error-correction
mechanisms. Each module can be used individually or combined
to form an entire pipeline. We hope that our toolkit will be useful
to researchers and developers who seek to experiment with the
new and promising storage technology.

Index Terms—DNA Storage, Data Storage, Noise Simulation,
Clustering, Trace Reconstruction

I. INTRODUCTION

The exponential increase in the amount of data being
generated every day has spurred significant interest in storage
technologies beyond the ones that are commonplace today.
The rapid improvements in DNA synthesis and sequencing
technology have led to DNA being proposed as a sustainable
storage medium [6], due to its outstanding density and
durability. Many DNA storage architectures have been proposed,
which leverage a large spectrum of available chemical tools to
enable efficient and long-lasting data storage [5], [10], [12],
[25], [39], [40].

Unfortunately, there are a lot of circumstances that make
it difficult to do research in DNA-based data storage systems.
First and foremost, there exists no publicly available end-to-
end DNA storage pipeline that can serve as a baseline for
research. While in recent years, we have seen a lot of research
trying to tackle different parts of the DNA storage pipeline,
these works tend to be standalone implementations of small
sections of the pipeline, where the impact of any change on
prior and later modules in the pipeline are not studied [18], [30],

[31]. The strong inter-module dependencies and the lack of
the end-to-end framework makes it difficult to judge the actual
performance of any proposed improvements, as the overall
impact of the change on the whole DNA storage system cannot
be measured.

Secondly, the steps in the DNA storage pipeline that are
performed in the wetlab, i.e., the synthesis, storage and
sequencing of DNA molecules, can be very expensive, both in
terms of cost and time, and require specialized equipment
and expertise. Only a handful of companies can reliably
synthesize DNA strands, and their services are very expensive,
currently costing at least 1000 dollars per MB of information
encoded in DNA [6], and oftentimes orders of magnitude
more. Beyond synthesis, most computing labs do not have
access to sequencing machines, or the required tools, chemicals,
and expertise needed to manipulate DNA and prepare it for
sequencing, and hence need to send their DNA strands to other
commercial or research wetlabs, adding days, if not weeks to
their experiments. To perform experiments with DNA storage
systems in a timely and resource-efficient manner, we need
to be able to accurately simulate various wetlab steps in the
pipeline. While a few different simulation approaches have
been proposed, they assume fairly simplistic error models that
do not capture the complex nature of errors that can occur
when storing data in DNA [18] and retrieving it back, resulting
in unrealistic performance and behavior of individual pipeline
modules, and the unrealistic overall end-to-end performance.
Researchers who develop algorithms for various software tasks
in the pipeline, such as clustering or trace reconstruction,
therefore cannot properly evaluate their algorithms using simple
synthetic datasets.

In this work, we present our end-to-end DNA-based data
storage toolkit, including a simulator for the wetlab processes.
Our toolkit can be used to encode a digital file into DNA
strands, that can then be taken through the entire DNA storage
pipeline, to be decoded and recovered at the end. Our toolkit
includes an accurate simulator for the wetlab steps of the
pipeline, which successfully captures the error profiles we
observe when using different DNA synthesis and sequencing
technologies. Importantly, our implementation of the DNA
storage pipeline is modular, allowing users to easily swap
in or out, their own implementation of any module of the
pipeline, to evaluate the changes in the performance of the
entire storage system. The toolkit contains implementations of
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multiple algorithms for each step of the DNA storage pipeline,
including the current state-of-the-art. Additionally, there are a
number of novel algorithms implemented in the toolkit, each
providing their own advantages to the storage system.

The rest of the paper is organized as follows. Section II
covers the background information about DNA storage needed
to understand our storage pipeline. Section III introduces our
DNA storage pipeline and the individual steps it comprises.
Section IV describes a flexible encoding module of our
pipeline and the multiple functionalities it supports. Section V
covers the challenges of simulating the wetlab steps and our
wetlab simulator in detail. Sections VI and VII cover our
baseline implementation and alternative algorithms for two
most computationally intensive parts of the decoding pipeline,
clustering and trace reconstruction, respectively. We discuss
the pipeline as a whole with some further overall evaluations
in Section IX, while other open-source implementations of
individual modules and the related work are reviewed in
section X.

II. BACKGROUND

A. Motivation for DNA Storage

DNA storage is an emerging storage technology that offers
many unique advantages. One of the most important is
its incredible physical density, which is several orders of
magnitude ahead of any alternative storage technologies [5],
[6], [23], [25]. Furthermore, DNA as a storage medium offers
extreme durability, measured in thousands or even millions of
years, depending on the specific preservation methods used [13].
This is in stark contrast to conventional storage mediums that
can retain data only for a few years before requiring costly
acquisition of new storage and tedious data copying to the new
medium.

Being a chemical form of data storage, many important data
operations can be performed as chemical reactions. This brings
significant advantages, such as convenient and low-cost data
copying via simple sampling and the use of various polymerase
chain reactions (PCR). Importantly, data stored in DNA can
be accessed at random using PCR in largely constant time,
regardless of the size of the data being searched [5], [6], [25].
Finally, the read-write interfaces for DNA storage will never
become obsolete and will only improve in cost, latency and
throughput over time due to the shared goals with human
medicine, whereas all other storage technologies and their
interfaces will eventually become obsolete [5], [6].

B. Challenges in DNA Storage

While the DNA storage technology is evolving rapidly, it
has its own set of unique challenges that need to be addressed
before it can become a viable alternative to traditional storage
media. The primary obstacle to widespread adoption of DNA
storage is the prohibitive cost of reads and writes [23], which
impedes not only the commercial deployment of DNA storage,
but also the research efforts. The latency of DNA read and write
operations is also substantially higher compared to traditional
storage media.

In DNA storage, data is read through the process of DNA
sequencing, for which there are many available technologies.
Data is written in the form of DNA molecules using a chemical
process known as artificial DNA synthesis, which is readily
available as a commercial service. This procedure can generate
an arbitrary sequence of {A, C, G, T} characters (also known
as bases, nucleotides), regardless of whether they have any
biological meaning. While it is now technically feasible to
synthesize DNA molecules exceeding 1000 bases in length [39],
[40], the synthesis yield drops sharply beyond a few hundred
bases and significant errors start to accumulate. This is why, in
contrast to the vast natural DNA molecules found within living
cells, the synthetic molecules produced by current synthesis
technologies are typically limited to a few hundred bases in
length. As a result, large data must be broken into pieces that
fit into smaller DNA molecules, which can be synthesized
economically [5], [10].

Due to its high density, durability, and latency, as well as
its infancy, DNA storage is expected to sit at the bottom of
the storage hierarchy, with the initial use case projected to
be cold storage for archival data [5], where latency is not
a critical factor. The read latency is primarily dominated by
the DNA sequencing process, which can be several hours
for high-throughput Next-Generation Sequencing (e.g., Illu-
mina sequencing). While Nanopore sequencing offers real-
time capabilities, its throughput is more restricted and the
process introduces more errors. The write latency is primarily
dominated by DNA synthesis and scales with the length of
DNA molecules. The throughput of both reads and writes
can be scaled out infinitely, but the question of cost becomes
important.

C. Indexing

Since DNA has 4 bases {A, C, G, T}, we can encode up
to 2 bits of information per character. As a result, a 200-base
DNA molecule can store 50 bytes of information at the upper
limit. The storage of substantial data thus necessitates the
fragmentation of this data into smaller segments that can fit
into shorter molecules. In contrast to conventional memory and
storage technologies, where each byte has its physical address,
we cannot establish a physical order between molecules in a
test tube. Therefore, some form of internal address referred
to as an index must be incorporated into each data fragment.
The indices preserve the order of all molecules within the file
they constitute and ensure that every molecule contains the
necessary information for reconstructing the original data from
its constituent parts [5], [15], [23], [25].

D. Data Encoding

To convert binary data into a DNA format for storage, it is
essential to employ an adequate encoding scheme that translates
the binary data into a sequence of {A, T, C, G} nucleotides.
Various encoding schemes exist, each with its own trade-offs.
Some schemes prioritize adhering to rules that facilitate the
chemical processes involved in the pipeline, even if it means
sacrificing coding efficiency. For instance, they may aim to

2



prevent the occurrence of extended runs of homopolymers
(repeating bases like AAAA) to promote the success of certain
types of DNA sequencing [25]. Others focus on balancing the
GC-content, which is the ratio between the total number of G
and C characters and the total length of a DNA molecule, in
order to improve the DNA synthesis success [39], [40]. This
type of coding is referred to as constrained coding, and most
of the early work on DNA storage employs some form of
it [2], [4], [5], [11], [16], [24]–[26], [29], [39], [40]. However,
constrained coding leads to significant losses in information
density [37]. In contrast, unconstrained coding does not seek
to account for any particular error types. Instead, it employs
simple data randomization to ensure that long homopolymers
occur with low probability and the average GC-content is
balanced [23], [34], [37]. Unconstrained coding achieves the
maximum coding density of two bits per nucleotide, while
relying on conventional error-correcting codes to handle all
types of errors, achieving the higher overall coding efficiency
and better resilience to any types of errors. In this work we
employ unconstrained coding, assuming a simple mapping of
two bits per nucleotide, while all error types are efficiently
handled using outer Reed-Solomon ECC codes [23], [25],
[34]. This approach has been shown to lead to much higher
information density for all practical ranges of error rates [37].
It is possible, however, to substitute the encoding module of
our pipeline with an arbitrary one.

Once a file has been divided into segments and encoded
as DNA strings, we append a pair of special file-identifying
sequences known as primers to the beginning and end of each
string, as illustrated in Figure 2(a). These primers serve as a
chemical tag, logically grouping related molecules together,
and allowing us to fetch the entire group at once, thereby
enabling random access. These tagged sequences are then sent
to a commercial synthesis service, where millions of physical
copies of each DNA string are synthesized collectively and
stored in the same test tube, often referred to as a DNA pool.

E. Random Access and Decoding

In order to access a file stored within a DNA pool, a process
called DNA sequencing is employed. First, to chemically
isolate only the molecules containing fragments of the target
file, the Polymerase Chain Reaction (PCR) is utilized. This
reaction exponentially replicates a selected subset of the
molecules (the selective exponential replication is also known as
amplification). PCR is a parametrizable reaction, the parameters
being two short (typically 20-nucleotide long) DNA sequences
called PCR primers. After PCR, all molecules that begin with
the first primer and end with the second primer will be amplified.
PCR therefore essentially provides an addressing mechanism
for random data access. Following the amplification of the
target molecules, they are subjected to sequencing using one
of the several DNA sequencing technologies available. The
sequencing procedure produces multiple noisy DNA strings,
commonly known as reads.

Throughout the synthesis, storage, wetlab manipulation, and
sequencing stages, errors can occur, leading to discrepancies

between the initially encoded DNA molecules and the final
reads obtained. The average number of sequenced reads per
originally synthesized molecule is termed sequencing coverage
or sequencing depth. A higher coverage for a molecule
simplifies its reconstruction from these reads but also increases
the sequencing cost linearly.

All reads that possess the correct pair of primers are
subsequently clustered based on their similarity, with the goal
of ideally grouping together all reads originating from the
same encoded DNA molecule. Typically, the Levenshtein (edit)
distance [23], [25], [31] serves as the similarity metric for
clustering. This distance is defined as the minimum number
of insertion, deletion, or substitution operations needed to
transform one string into another.

Each cluster contains multiple noisy copies of the same
original DNA string. Subsequently, one of several consensus-
finding algorithms [3], [23], [25], [33], [35], [39] is employed
to produce the best estimate of the original DNA string from
each cluster of related reads. In the field of information theory,
this consensus-finding step is more formally referred to as
trace reconstruction; we use the two terms interchangeably.

Following the process of clustering and reconstructing the
most likely original strand from each cluster, the reconstructed
strands undergo decoding to revert to binary data. The original
file is recovered by rearranging its constituent pieces with the
aid of the internal address (i.e., index) information embedded
in each strand. Any remaining errors from previous steps in
the pipeline are rectified using error-correction codes, typically
employing an outer Reed-Solomon or LDPC code [13], [25].
These ECC schemes group a larger number of molecules, often
tens of thousands [25], into encoding units organized as a
matrix. This grouping facilitates erasure coding in the event
of the losses of entire molecules and amortizes the cost of
error correction across a more extensive dataset. For instance,
in the state-of-the-art architecture [25], all reconstructed DNA
molecules are treated as columns in a matrix, where separate
DNA molecules are then generated to serve as an external
redundancy, with each codeword representing a row in this
matrix, as shown in Figure 2(b).

F. High-level Architecture

PCR provides an addressing mechanism for random data
access through a pair of 20-nucleotide long unique sequences
called primers. These primers must be designed to be suffi-
ciently different from one another in Hamming distance [25].
As the primers of one file are logically unrelated to the primers
of another file, there is no notion of hierarchy or distance
between the files [34]. Therefore, the underlying architecture
of the system becomes a key-value store [5], with a pair of
primers constituting the key, and the payloads of all molecules
tagged with the same pair of primers constituting the value.

III. PIPELINE OVERVIEW

To encourage research on storage architectures and the
algorithms for various steps of the DNA storage pipeline
discussed in section II, our toolkit is modular, allowing different
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modules to be swapped in and out for each step of the
pipeline. Our DNA storage pipeline combines five modules,
each performing one of the following steps:

• Encoding: Converting a file into the encoded strands that
need to be synthesized for DNA storage. This includes
the redundancy used for error correction, and is covered
in Section IV.

• Simulation: Simulating the errors introduced by wetlab
steps of the pipeline - synthesis, storage and sequencing.
We variably replicate the strands and introduce errors
into the synthesized strands to obtain noisy reads of each
encoded strand. Covered in Section V.

• Clustering: Clustering the noisy reads such that each
cluster contains reads from the same encoded strand.
Covered in Section VI.

• Trace Reconstruction: Reconstructing the original en-
coded strand from each cluster of noisy reads. Covered
in Section VII.

• Decoding and Error Correction: Using error correction
codes to correct any error that might have been introduced
by the previous steps in the pipeline and recovering the
original file. The decoding scheme directly depends on
the encoding scheme used and is thus covered along with
it in Section IV.

Figure 1 illustrates the full pipeline with a number of
available implementations for each step. In the following
sections, we will discuss each module and its implementations.

IV. ENCODING, DECODING AND ERROR CORRECTION

In the encoding step of the pipeline, the digital data is
encoded into DNA strands to be synthesized. We implement
three different encoding/decoding modules that follow the state-
of-the-art encoding schemes and their respective decoding
schemes [23], [25], along with Reed-Solomon error-correcting
codes.

A. Implementation

Our baseline implementation strictly follows the DNA
storage architecture presented by Organick et al. [25], and
utilizes Reed-Solomon error-correcting codes (ECC). In this
architecture, data molecules and ECC molecules are structured
into a matrix, where each DNA molecule corresponds to
a column in the matrix, and each row represents a Reed-
Solomon codeword. The entire matrix serves as a single
encoding/decoding unit. Implementation details can be obtained
from the original work [23], [25].

One interesting observation is that in this architecture, errors
like insertions and deletions within each molecule (column)
are identified as substitution errors within the corresponding
codeword (row) and are corrected accordingly. After these
corrections are made, the data payload in each codeword is ex-
tracted and reassembled into the original data by concatenating
them in the order determined by the index.

It should be noted that a big advantage of having the entire
DNA storage pipeline is being able to design and improve
modules with subsequent modules down the pipeline in mind.

Encoding
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Fig. 1. An overview of the DNA storage pipeline.
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Fig. 2. (a) The configuration of a DNA molecule in the context of DNA-based
storage as implemented in our pipeline [25]. The payload contains either the
encoded data or the error correcting information.
b) The organization of data and ECC molecules within an encoding unit,
structured as a matrix, as in the state-of-the-art Gini implementation, which
spreads the codewords diagonally to equalize the reliability of different parts
of each codeword, following [23]
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For example, it has been observed that double-sided BMA used
in the trace reconstruction step concentrates the errors onto the
middle indexes [23], thus making the middle rows highly error
prone and sometimes unrecoverable. This reliability skew is
what encouraged Dehui, et al. [23] to develop the following two
alternate encoding schemes, which can improve the accuracy
of the decoded codewords.

B. Alternative: Gini

Since codewords are more error prone in the middle indexes,
Gini [23] simply redistributes the codewords diagonally instead,
in effect distributing the error prone middle indexes across all
codewords evenly. Gini encoding is illustrated in Figure 2.
This removes the positional bias which the original baseline
implementation suffers from while still maintaining the ability
to correct for erasures as a single molecule is still distributed
across all codewords.

Where originally many copies of each molecule might be
needed to rectify the most unreliable codewords, redistributing
this unreliability evenly ensures that in general, lesser copies are
needed to correct the errors for every codeword. Put differently,
Gini is more reliably able to correct for errors given the same
number of copies per molecule.

C. Alternative: DNAMapper

DNAMapper [23] provides an alternative way to deal with
the reliability skew. The intuition is to categorise different
bits based on their reliability needs, mapping data that require
higher reliability onto more reliable indexes and conversely,
mapping data with lower reliability needs onto less reliable
indexes. In general, this mapping scheme is suitable for any
data that has a concept of quality, such as images or videos.
Data is decoded as per normal, just that now, the data from
unreliable codewords are from bits that are more corruption-
tolerant, such that the overall quality of the retrieved images
or videos is maximized.

V. SIMULATION

The next module of the DNA storage pipeline encompasses
a range of processes carried out within a wetlab setting, namely,
DNA synthesis, storage, and sequencing. All of these processes
introduce errors into the DNA strands. As a result, the DNA
sequences obtained at the end through sequencing are noisy
versions of the initially encoded strands. To address these
errors, subsequent modules in the pipeline, such as clustering
and trace reconstruction, are designed with the specific purpose
of error correction. They are assessed based on their ability to
faithfully restore the original, error-free DNA strand.

Beyond being error prone, these wetlab processes, particu-
larly DNA sequencing and synthesis, are currently prohibitively
expensive. Their high cost poses a significant obstacle to
conducting large-scale experiments on DNA storage pipelines
using authentic data. A commonly used practical solution to
this problem is simulating the introduction of errors during the
wetlab processes. Researchers can then effectively evaluate the
performance of the subsequent modules in a more cost-efficient

manner. In an ideal world, this simulation-based approach
enables the assessment of error correction methods without
the cost associated with real-world wetlab experimentation.
However, accurately simulating these wetlab processes is
challenging.

A. Current Limitations

While some sophisticated simulation techniques have been
proposed [14], [41], most research in DNA storage uses
fairly naı̈ve simulations. We implement a baseline following
this generalized data model as described by Rashtchian et
al. [31]. In this model, the error profile is modelled using the
Levenshtein (edit) distance. At every index of the given input
strand, an insertion, deletion or substitution is introduced with
probabilities pI , pD, pS specified by the user. Each index of
each strand is trialed independently with the same probabilities.
This approach does not accurately replicate the errors found
in the wetlab experiments. In reality, the sequenced data from
wetlab experiments shows that the probability of error is
dependent on the index, i.e., that the position of errors follows
a certain distribution [18], and the likelihood of insertions,
deletions, and substitutions is far from being equal. Furthermore,
some of the error types often come in batches, whose length
tend to follow a particular distribution [18].

Besides the flawed assumption that every index has identical
error rates, any method that models the errors using edit
distance inherently assumes that the output strand is always a
result of the least number of edits from the original strand, when
in reality this ground truth is unknown. In fact, even though
errors can be modelled by insertions, deletions and substitutions,
these transformations are only a proxy for the actual unknown
edits that occurred. Thus, even if a large sample of data is
used to estimate the probabilities of insertions, deletions and
substitution at the level of every index, we find that it would
not be able to accurately simulate real world output from the
wetlab module. Prior work [14], [32], [41] also evaluates the
accuracy of their simulation by comparing the distributions
of different error types in the simulated datasets to the error
distributions in real datasets. Such evaluations suffer from the
same incorrect assumptions.

However, a key advantage of having the whole pipeline
available is the ability to assess the performance of individual
modules in relation to the whole pipeline. We can evaluate
how realistic the different approaches to simulating the errors
of a wetlab are, by comparing the performance of the trace
reconstruction module on real data against the simulated data.
Thus when designing our simulator, we evaluate the simulator
using the following metrics (see table I):

(i) Error rate at different indexes of the reconstructed strands
using real data versus simulated data. A better simulation
will have highly similar error rates to that of real data
after reconstruction. (Figure 3)

(ii) Average value of (i) over all indexes. A better simulation
will have a similar average.
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Fig. 3. Comparison of different wetlab simulations against real data from
wetlab. The error rate (y-axis) here refers to the proportion of bases wrongly
reconstructed from the noisy reads for the specified index.

(iii) Average value of the absolute difference of (i) over all
indexes. A better simulation will have an average closer
to 0.

(iv) The number of perfectly reconstructed strands when using
real data versus simulated data. The closer the numbers,
the better the simulation.

In general, the errors introduced in a real wetlab setting
are much more complex than the ones introduced by previous
simulations. As a result, reconstructing the original strand
from the simulated datasets is very easy in comparison to the
real datasets. Figure 3 compares the performance of our trace
reconstruction module – specifically the double-sided BMA
algorithm [23] – on data obtained from our baseline simulation
based on Rashtchian et al. [31], SOLQC, a probabilistic model
with probabilities conditioned on the nucleotide level for
insertion, deletion and substitution errors, as described and
implemented in prior work [8], [32], and real sequenced data
from a wetlab [35]. It should be noted that the SOLQC model
also simulates pre-insertions with a certain probability but not
post-insertions, which results in the forward reconstruction
being much harder than the reverse reconstruction.

B. Data-Driven Simulator

Modeling errors, as outlined earlier, presents a multi-faceted
challenge. These errors can arise from various pipeline stages,
spanning synthesis, storage, manipulation, and sequencing.
Additionally, there is a clear position-dependence to these
errors on the strand’s base. To model such layered, position-
specific noise, we employ learning-based methods, drawing
upon the expansive paired clean-noisy strand dataset from prior
work [35]. Two key considerations shape our methodology: (1)
Ensuring proper alignment between corresponding nucleotides
of input and output strands is crucial, as insertion and deletion
errors can cause length discrepancies; (2) Our model needs to
efficiently manage long sequences, which proves problematic
for simple stacks of traditional recurrent neural networks
(RNNs) [1].

Given the analogous nature of sequence-to-sequence transfor-
mations in our problem and neural machine translation (NMT),
we draw inspiration from established NMT methodologies.
Both domains necessitate the generation of new sequences
conditioned on provided inputs, and ensuring precise alignment
between these sequences is paramount. Consequently, we
adopt the attention-based encoder-decoder architecture [1],
prevalent in NMT, for our problem. We design a neural network
to directly model Pr(snoisy|sclean), where s indicates DNA
strands. During inference, an auto-regressive decoder generates

C G A A

Bidirectional GRU Encoder

T ...

Attentional
GRU Decoder

C G A T

Clean strands

Hidden states

Noisy strands

Generating direction

Fig. 4. The sequence-to-sequence RNN structure of our simulator. hi: hidden
states of RNN. αi: attention weight.

probability distribution predictions of nucleotides from left to
right, position-by-position, and a sampling method, e.g., greedy
or beam sampling, can be adopted to obtain the sequence
output. During training, the model learns the distribution of
the subsequent nucleotide in the noisy strand, conditioned on
the preceding nucleotides and the provided clean strand in the
input.

As depicted in Figure 4, the encoder (orange) consists of
a bi-directional recurrent neural network (RNN) designed to
transform the raw input sequence into a set of ”annotations.”
Each annotation hi encompasses information from the entire
input sequence, but primarily emphasizing the contextual
information surrounding the i-th (nucleotide) in the sequence.

The decoder, represented by the blue box in Figure 4, is a
unidirectional RNN that ingests the annotations and previously
generated nucleotides to predict the probabilities for the next
potential nucleotide. Crucially, before this probability predic-
tion, the decoder employs an attention mechanism—a set of
trainable parameters—to determine which encoder annotations
are particularly relevant for the current generation step. Instead
of simply relaying all encoder annotations directly to the
decoder, an attention-weighted average of these annotations
is passed. Annotations deemed more relevant are assigned
higher weights. In our implementation, both the encoder and
decoder RNNs utilize Gated Recurrent Unit (GRU) [9] cells
due to their resistance to overfitting compared to traditional
Long Short-Term Memory (LSTM) cells. For our optimal
model configuration, the hidden layer size is set at 128, and
both the encoder and decoder comprise a single GRU layer.
For the decoding process, we adopt greedy sampling. In this
approach, once the token probabilities for a specific position
are determined, immediate sampling ensues.

Figure 3 compares our RNN model against the same real
data. While previous simulations produce noisy strands that
behave very differently from the real data from a wetlab, we
can see that the noisy strands produced by our RNN model
closely replicate the difficulty of reconstructing real wetlab
data. In table I, for the 3 other metrics from Section V-A, we
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TABLE I
(II) RNN MODEL HAS THE CLOSEST AVERAGE ERROR RATE ACROSS ALL
INDEXES TO THE REAL DATA. (III) RNN MODEL ERROR RATE DEVIATES

THE LEAST FROM REAL DATA. (IV) RNN MODEL HAS THE CLOSEST
NUMBER OF PERFECTLY RECONSTRUCTED STRANDS TO REAL DATA.

Rashtchian SOLQC RNN Real
(ii) 7.21% 8.17% 12.38% 11.808%
(iii) 4.59% 6.20% 0.80% -
(iv) 546 413 338 332

can see the RNN model also behaves the most similarly to the
real wetlab data. In this expriment we use a dataset of 2̃70K
DNA reads belonging to 1̃0K clusters [35]. We have divided
the clusters into a test:validation:train split of 7988:998:998.

VI. CLUSTERING

Once we receive the noisy reads from the simulation module,
we need to cluster them based on some measure of similarity.
This is done in order to correct for errors introduced during
the wetlab phase. Ideally each cluster will contain reads of the
same originally encoded strand. Once these reads are grouped
together into clusters, we can find the consensus encoded strand
for each cluster in the next module.

A. Baseline Implementation

Edit distance is the most commonly used similarity met-
ric when clustering DNA strands. However, edit distance
computations are very expensive. Thus, designing a fast
and efficient algorithm for clustering DNA strands involves
using as few edit distance comparisons as possible. Another
requirement of the algorithm is to be distributed to efficiently
utilize all the resources available to the system. Our baseline
clustering algorithm implementation follows the distributed
clustering algorithm described by Rashtchian et al. [31]. In
this implementation, every strand begins as a singleton cluster
and clusters that are highly similar are iteratively merged until
sufficiently different clusters remain.

To briefly describe the algorithm, at the beginning of the
clustering, each DNA strand forms an individual singleton
cluster. In the first step, a random sequence of k bases is
designated as an anchor. Subsequently, a representative from
each cluster is chosen at random, and the clusters are partitioned
using the l bases following the first appearance of the anchor
in the representative sequence.

After this partitioning, within each partition, a collection of
substrings, each with a length of q and referred to as q-grams,
is randomly selected. From each cluster within the partition, a
representative is randomly sampled. For each representative, a
binary string known as a q-gram signature is generated, where
the presence and absence of q-grams in the representative are
denoted by ‘1’ and ‘0’ in the corresponding bit positions.

Now instead of performing edit distance comparisons be-
tween the representatives from two different clusters, we can
compare two clusters by calculating the Hamming distance
between the q-gram signatures of their representatives. Ham-
ming distance calculations significantly outpace edit distance
computations, resulting in considerably quicker comparisons.
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Fig. 5. Automated configuration for clustering: θlow and θhigh are determined
by plotting this graph using a small sample of strands.

If representatives from two distinct clusters within the same
partition are very close in q-gram signatures, the two clusters
are merged. If the Hamming distance between them is too high,
the clusters are not merged. Thus for this algorithm, a threshold
is pre-determined for the Hamming distance between q-gram
signatures. Only if the Hamming distance lies between the
threshold of too high and too low, an edit distance comparison
is made to make the merge decision. Thus, edit distance
comparisons are avoided as much as possible. After each
round of clustering, this entire process is repeated with a
fresh, randomly chosen anchor sequence.

B. Automatic Configuration for Clustering

In prior work [31], the thresholds for Hamming distance
between q-gram signatures are tuned by the user to obtain
optimal clustering. In our implementation, we have provided a
parameter to automate the calculation of threshold values of
Hamming distance. This is done by sampling a handful of reads
from the entire input and calculating the Hamming distance of
q-gram signatures between them and a larger random sample
from the remaining reads. This Hamming distance is observed
to be plotted as shown in Figure 5. We can use this plot
to easily determine the threshold values. In the figure, the
lower threshold is indicated by θlow and if the Hamming
distance is below θlow, we merge the clusters without making
an edit distance comparison. The upper threshold in the figure
is marked by θhigh and if the Hamming distance is above
θhigh, the algorithm chooses to simply not merge the clusters
without needing to make an edit distance comparison. It is
only when the Hamming distance is between θlow and θhigh
that the algorithm calculates the edit distance between the two
cluster representatives.

C. Our Alternative Algorithm: w-grams

In our novel alternative construction, we keep most of the
q-gram algorithm as is, but instead of pre-calculating q-gram
signatures as in the baseline, we calculate the w-gram signatures
instead. While a q-gram signature is made up of 0s and 1s to
indicate the presence or absence of a set of random substrings
in the string, a w-gram signature consists of the position of
the first occurrence of the substrings within the string. The
Hamming distance then needs to be replaced by the L1 norm
for calculating the distance between the w-gram signatures.
Outside of these two changes, the algorithm remains the same
as the baseline.
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TABLE II
COMPARING TWO CLUSTERING ALGORITHMS (AVG OVER 10 RUNS)

Error Rate Clustering Accuracy Clustering Time (in seconds) Signature Calculation Time (in seconds) Overall Time (in seconds)
q-gram w-gram q-gram w-gram q-gram w-gram q-gram w-gram

0.03 0.9922 0.9923 4 4 1 2 5 6
0.06 0.9919 0.992 9 10 1 2 10 11
0.09 0.9908 0.9913 13 19 1 2 14 21
0.12 0.9883 0.9894 29 35 1 2 30 37
0.15 0.9823 0.9845 56 71 1 2 57 73

These changes make the pre-calculation and storage of
signatures more expensive in space and slightly more expensive
in time. They however increase the distance between the
signatures of clusters significantly, which further decreases
the number of edit distance comparisons that the algorithm
needs to make. It also decreases the few mistakes being made
during clustering because of Hamming distance comparisons.
As can be observed in table II, at a coverage of 10, this updated
algorithm consistently increased the accuracy of the clustering,
at the cost of a low increase in runtime, with the increase in
performance improving with the increase in overall error rate.

VII. RECONSTRUCTION

In the trace reconstruction module, we recreate the originally
encoded DNA strands from each cluster of noisy reads produced
in the clustering step. We implement three different algorithms
for this module.

A. Baseline Implementation

The baseline implementation follows the BMA-lookahead
algorithm for DNA-based data storage as proposed by Organick
et al. [25]. For every cluster, a consensus strand is incrementally
recreated from left to right by using the noisy strands in the
cluster in the following way: Every noisy strand maintains an
individual pointer that starts at the beginning of the strand.
In each step, a majority vote is taken to determine the most
likely base in the consensus strand. Strands that agree with
this base have their pointers incremented by one as normal,
and this new index is used for the reconstruction of the next
base in the consensus strand. However, if a strand does not
agree with the majority base, in order to continue using it to
find the consensus, the algorithm must first determine the most
likely edit that occurred in the strand so that it can properly
align it with the rest of the noisy reads. This is achieved
by looking ahead at the next few bases to guess whether an
insertion, deletion or substitution has occurred, and the pointer
of this strand is changed according to this assumption. The
algorithm then moves on to reconstruct the next base by taking
consensus of the next set of pointers, and continues taking
majority vote in a similar manner until the whole consensus
strand is reconstructed.

Note that any misalignment of a noisy strand, caused by
a wrong assumption of the edit, propagates to later indexes.
This reduces the chance of correctly reconstructing the original
base for the following indexes. Thus, the longer the strand, the
more unreliable the reconstruction of later indexes becomes.
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Fig. 6. Double Sided algorithms reduce the peak error rate and concentrates
errors in the middle indexes. Needleman Wunsch outperforms prior work.

B. Alternative: Double-sided BMA

A key observation from the BMA-lookahead algorithm is
that the propagation of error is symmetric. This means that
if the consensus strand was instead being reconstructed from
right to left with pointers starting at the end of the noisy
reads, it would be the earlier indexes that are more unreliably
reconstructed. This observation motivated the strategy of
Double-sided BMA [23], which is to first reconstruct the left
half of the consensus strand from left to right using the BMA-
lookahead algorithm from left to right, and then to reconstruct
the right half of the consensus strand by using the BMA-
lookahead algorithm from right to left. The two halves are
then joined to create the final consensus strand. Since the two
reconstructed halves iterate through only half the length of
the noisy strands, the errors will only be propagated halfway
through, to the middle of the strand where we observe a peak
in unreliable reconstruction at the middle indexes. The different
error propagation in BMA-lookahead and double-sided BMA
algorithms can be observed in Figure 6.

C. Our Alternative Algorithm: Needleman Wunsch

In the BMA reconstruction methods, conflicting strands are
realigned by looking ahead to and using the next few bases.
However, we can instead first compute the multiple sequence
alignment of all noisy strands within a cluster by using the
Needleman-Wunsch algorithm [20], [21] to compute the global
alignments that minimizes edit distance. Once we have this
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alignment, we can reconstruct the consensus strand by merely
taking the majority vote at every index.

Sometimes this alignment might exceed the expected length
of the original encoded strands. In such cases, we can compute
the number of characters exceeded, x, and choose the x most
unreliable indexes to omit in the final consensus strand. We do
this by counting the number of insertion/deletion alignments (‘ ’
character) at every index for every aligned read, and omitting
the x indexes with the most number of indels.

This simple algorithm is our construction and is built on top
of the SIMD partial-order alignment [36] implementation of
Needleman-Wunsch as described in prior work by Christopher
Lee [20]. As can be seen in Figure 6, our Needleman-Wunsch
algorithm is much more accurate than prior work. As shown in
Table III, it is also significantly faster, with the improvement
in speed increasing with increasing coverage.

VIII. HANDLING WETLAB DATA

In an ideal scenario, rather than simulating the wetlab
processes, the encoded DNA strands could be synthesized,
preserved in a wetlab environment, and subsequently sequenced
when we want to retrieve the data. The sequencing process,
whether utilizing Illumina or Nanopore sequencing technolo-
gies, yields data in the fastq file format. Within our toolkit, we
have incorporated a dedicated module designed to manage this
sequenced data, effectively allowing it to seamlessly replace
the simulation module.

To facilitate the transition of sequenced data from the wetlab
to the clustering module, a preprocessing step is required
to align its format with that of our simulated data. Initially,
the fastq file is converted into a text file format, ensuring
compatibility with the wetlab simulation module. Furthermore,
note that the sequenced reads obtained from the wetlab exist in
both forward and reverse directions, necessitating consideration
of DNA strand directionality within our pipeline. To address
this, we perform a transformation, converting the 3’ to 5’ DNA
strands into the 5’ to 3’ orientation, thereby aligning them with
the conventions of our simulator. This is done by comparing
the primers in the reads with the library of primers used. Before
entering the clustering phase, a last critical step is to remove
the primers from the sequenced reads. Only the core payload
information is retained and passed on to the clustering module
for subsequent processing.

IX. OVERALL PIPELINE EVALUATION

We evaluate the DNA Storage Toolkit by performing some
experiments on the entire pipeline. To properly evaluate its
modularity, we isolate and test individual components of the
pipeline to ensure they work correctly and independently. We
systematically alter one component at a time while keeping the
others constant, in order to debug any issues with dependencies
or interactions that might exist within the pipeline. The latency
breakdown is shown in table III and the evaluations are
performed on an Intel Xeon Gold 5118 server with 24 CPU
cores, 2 threads per core.

For one image, instead of using the wetlab simulation,
we had the encoded strands synthesized into DNA by Twist
BioScience. We performed PCR to amplify these strands and
then sequenced the file using Nanopore sequencing to obtain
the noisy reads of the synthesized strands. These noisy reads
were then passed on to the clustering module and the rest of the
pipeline was evaluated normally. We were able to successfully
retrieve the image as encoded, verifying the end-to-end nature
of the pipeline.

When we evaluate all modules of our pipeline in a single
thread, we find that the most computationally intensive and
thus slowest step by far is clustering. In a working DNA
storage system we would have to cluster many billions if
not many trillions of reads from every sequencing run. We
ensure scalability by harnessing multiple threads and optimized
resource distribution for the implementation of the distributed
clustering algorithms in our toolkit. We can observe in table III
that the difference between the runtime of q-gram and w-gram
clustering increases with coverage, making w-gram unsuitable
for high coverage settings.

A. Time Complexity

Different modules of the pipeline vary greatly in terms of the
computational complexity and amenability to parallelization.
In most practical settings clustering runtime tends to be the
dominant factor.

Encoding and decoding are dominated by ECC computation,
which is in the worst case cubic in the codeword length. Every
codeword can be encoded/decoded in parallel.

Clustering is subquadratic in terms of the number of reads.
The exact complexity is

O(max(n1+O(p), n2

mΩ(1/p) )) · (1 + log(s/ϵ)
s ) [31]

where n is the total number of reads, m is the number of
underlying clusters, p is the average probability of errors (inser-
tions, deletions, substitutions) per nucleotide, and accuracy of
1− ϵ. Our w-gram variant further improves the constant factor
at lower sequencing coverage. Our clustering implementation
supports parallelization in both multi-threaded and distributed
settings.

Simulation complexity for both naive and RNN is O(n ·L),
where n is the number of reads and L is the strand length. The
constant factor is higher for RNN.

The complexity of trace reconstruction for both single- and
double-sided BMA is O(n · L), where n is the size of the
cluster and L is the strand length. The complexity of the
Needleman-Wunsch approach is O(L ·N ·Np) [21] , where N
is the number of nodes in the partial order graph and Np is the
average number of predecessors per node. In all approaches
the clusters are reconstructed in parallel.

X. RELATED WORK

While there is no prior openly available end-to-end DNA data
storage pipeline, there are many prior works that have made
available individual modules or a combination of modules from
the pipeline. By combining these modules with the modules
in our toolkits, different complete pipelines can be created.
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TABLE III
LATENCY OF THE MODULES IN OUR DNA STORAGE TOOLKIT IN SECONDS.
(SETTING: BASELINE ENCODING, PAYLOAD LENGTH = 120, ERROR RATE =

6%, AVG OVER 10 RUNS.)

Pipeline Encoding Clustering Recon Decoding Total
Coverage = 10

q-gram + BMA 108 22 13 2 145
q-gram + DBMA 108 22 25 2 157
q-gram + NWA 108 22 11 2 143
w-gram + BMA 108 23 13 2 146
w-gram + DBMA 108 23 25 2 158
w-gram + NWA 108 23 11 2 144

Coverage = 50
q-gram + BMA 108 68 167 2 345
q-gram + DBMA 108 68 329 2 507
q-gram + NWA 108 68 51 2 229
w-gram + BMA 108 128 167 2 405
w-gram + DBMA 108 128 329 2 567
w-gram + NWA 108 128 51 2 289

DBMA: Double-sided BMA; NWA: Needleman Wunsch

Recently, Ping et al. [27] presented the Yin–Yang codec,
attempting to achieve a physical information density close to
the theoretical maximum. Their prior work Chamaeleo [28] pro-
vides a toolkit to evaluate codecs for DNA storage and evaluates
some popular codec available at the time. It should be noted
that these evaluations were made with very simple simulations
methodologies which are generally not very representative of
real wetlab experiments. In the completely opposite direction,
DNA-Aeon [38] presents a codec that prioritizes handling of
any issues that might occur during the wetlab activities of
the storage pipeline, ranging from introduced errors to very
skewed sequencing distributions. Another alternate DNA codec
available to us is the ADS Codex [17], which is a DNA storage
codec released by the Los Almos National Laboratory, which
is focused on offering exceptional high data density while
remaining adaptable to various needs related to DNA synthesis
and sequencing, for example adhering to restrictions on the
longest homopolymers allowed.

While not designed for DNA-based data storage, the Deep-
Simulator by Li et al. [22] uses a Bi-LSTM to simulate
the entire Nanopore sequencing pipeline. In the initial Deep
Learning phase, DeepSimulator accepts a sequence of bases
as input and produces electrical current levels corresponding
to the sequencing process as output. In the second step, these
current levels are transmitted to a basecaller, which interprets
the current data and translates it into the corresponding bases.
Similar to prior work [14], we found that the DeepSimulator is
not directly successful in simulating the DNA storage model.
Hamoum et al. [14] build a probabilistic model similar to noisy
channel models to simulate the errors introduced in Nanopore
sequencing.

Yuan et al. [41] have released a probabilistic simulator model
for the wetlab steps in DNA storage which incorporates some
domain knowledge so that it can be easily trained for different
sequenced datasets. Their implementation is quite modular and
can be easily slipped in place of our simulation module.

Compared to the clustering algorithm implemented in our
toolkit [31], Clover [30] presents a low memory consumption

algorithm for clustering DNA reads. The algorithm constructs
a multiple tree structure to search for a specified interval of
DNA sequences, thus avoiding computation of the Levenshtein
distance, which is the most expensive step in most naive
clustering algorithms.

Sabary et al. [33] proposed a few different trace recon-
struction algorithms with implementations made available in a
user-friendly GUI tool. This work was packaged with two other
modules for some basic wetlab simulations and clustering, and
presented at the Non-Volatile Memories Workshop as DNA-
Storalator [8]. The tool contains good implementations of
many different trace reconstruction algorithms. However, it
is crucial to emphasize that the three modules implemented
in their work remain disconnected from each other, with the
clustering module solely providing a performance report rather
than returning the generated clusters. Because the clustering
output is unavailable, the trace reconstruction implementation
directly relies on the ideal clusters produced by their simulation
module.

Although Reed-Solomon codes serve as the prevailing frame-
work for error management in most proposed DNA storage
architectures, some prior research has explored alternative
approaches. In contrast to relying on Reed-Solomon codes,
Chandak et al. [7] have made available a novel scheme that
departs from the conventional separation paradigm. Their
alternative scheme adopts a single, extensive block-length
LDPC code, effectively addressing both erasure and error
correction tasks. In conjunction with this approach, they
incorporate specific heuristics designed to effectively manage
insertion and deletion errors. The previously discussed channel
model [14] also combines non-binary LDPC codes with an
implementation of constrained consensus sequence algorithm
for DNA storage [19] for its error correction mechanism.

XI. CONCLUSION

While the remarkable advancement in DNA synthesis and
sequencing technologies has ignited a surge of interest in
leveraging DNA as a compact and durable medium for data
storage, a comprehensive toolkit encompassing all essential
components of the DNA-based data storage pipeline for
research purposes has been notably absent. In response to
this critical gap, in this work we introduce a versatile, end-to-
end DNA data storage toolkit that guides an input file through
the entire DNA storage pipeline. Our contribution encapsulates
implementations of state-of-the-art techniques, and at some
junctures of the pipeline introduces novel algorithms for the
tasks. These key tasks encompass data encoding into DNA
strands, simulation of the intricate wetlab processes such as
synthesis, storage, and sequencing, clustering of the sequenced
outcomes, trace reconstruction of clusters, and the final decod-
ing of the originally encoded file with robust error-correction
mechanisms. Each module within our toolkit stands as an
independent entity, capable of individual utilization or seamless
integration into a holistic pipeline. Our overarching objective
is to empower researchers by providing a highly modular
toolkit that encapsulates existing DNA storage methodologies
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while inviting innovation through easy integration of any novel
algorithms. For quick and inexpensive experiments during
research, we also offer a robust simulator that faithfully mirrors
real-world error profiles encountered when employing diverse
DNA synthesis and sequencing technologies.

AVAILABILITY

Our DNA storage toolkit is available at
https://github.com/prongs1996/DNAStorageToolkit.
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