
Cost-Efficient Large Language Model Serving for Multi-turn Conversations with
CachedAttention

Bin Gao1,*, Zhuomin He2,*, Puru Sharma1, Qingxuan Kang1, Djordje Jevdjic1, Junbo Deng3,
Xingkun Yang3, Zhou Yu3, and Pengfei Zuo3,†

1National University of Singapore 2Shanghai Jiaotong University 3Huawei Cloud

Abstract

Interacting with humans through multi-turn conversations is a
fundamental feature of large language models (LLMs). How-
ever, existing LLM serving engines for executing multi-turn
conversations are inefficient due to the need to repeatedly
compute the key-value (KV) caches of historical tokens, in-
curring high serving costs. To address the problem, this paper
proposes CachedAttention, a new attention mechanism that en-
ables the reuse of KV caches across multi-turn conversations,
significantly reducing the repetitive computation overheads.
CachedAttention maintains a hierarchical KV caching sys-
tem that leverages cost-effective memory/storage mediums to
save KV caches for all requests. To reduce KV cache access
overheads from slow mediums, CachedAttention employs
layer-wise pre-loading and asynchronous saving schemes to
overlap the KV cache access with the GPU computation. To
ensure that the KV caches to be accessed are placed in the
fastest hierarchy, CachedAttention employs scheduler-aware
fetching and eviction schemes to consciously place the KV
caches in different layers based on the hints from the infer-
ence job scheduler. To avoid the invalidation of the saved KV
caches incurred by context window overflow, CachedAtten-
tion enables the saved KV caches to remain valid via decou-
pling the positional encoding and effectively truncating the
KV caches. Extensive experimental results demonstrate that
CachedAttention significantly decreases the time to the first
token (TTFT) by up to 88%, improves the prompt prefilling
throughput by 8.2× for multi-turn conversations, and reduces
the end-to-end inference cost by up to 56%. For long sequence
inference, CachedAttention reduces the TTFT by up to 95%
and improves the prompt prefilling throughput by 22×.

1 Introduction

With impressive performance on a wide variety of tasks, large
language models (LLMs) have ushered in a new era of gen-

*Work done during their internship at Huawei Cloud.
†Corresponding author: Pengfei Zuo (pengfei.zuo@huawei.com).

erative applications [32, 46, 47]. However, serving these gen-
erative applications with LLMs is very expensive due to the
LLM inference employing a large number of GPUs. Given
the high demand for generative applications, reducing the cost
of inference becomes crucial.

Engaging in multi-turn conversations with humans is an
essential capability of LLMs [52, 56]. These multi-turn con-
versations help LLMs comprehend context, user intent, and
emotional nuances, enhancing their ability to respond appro-
priately. Based on the ShareGPT data [41, 65], a widely-used
real dataset collected from ChatGPT, 78% of conversations
involve multiple turns, as analyzed in Section 2.3.

However, executing multi-turn conversations in current
LLM serving engines is highly inefficient, as it requires a large
number of repetitive computations, incurring high serving
costs. During a single turn of conversation, the LLM engine
stores intermediate data, key-value (KV) pairs [4, 22, 37], in
the limited high-bandwidth memory (HBM) on GPUs. When
that conversation ends and the conversation session becomes
inactive, the LLM engine generally discards the KV cache
associated with that session, to free up space in the HBM for
other active sessions. When the session becomes active again,
i.e., the user sends the next message in the conversation, the
LLM engine computes the whole KV cache again. This leads
to repetitive computation of the same KV cache, wasting valu-
able GPU computation resources. With the number of con-
versation turns increases, the repetitive computation overhead
linearly increases. Our analysis based on ShareGPT shows
that up to 98% of the prefilling cost comes from repetitive
computation for the KV cache, as presented in Section 2.3.

To reduce the serving cost and improve the inference perfor-
mance, this paper proposes CachedAttention, a new attention
mechanism that enables the reuse of KV caches across multi-
turn conversations rather than discarding them. When a con-
versation session becomes inactive, CachedAttention saves
the corresponding KV cache in a KV caching system. Upon
the resumption of the same session, CachedAttention loads
and reuses the saved KV cache from the KV caching system,
thereby eliminating the overhead of the repetitive computa-

1

tion. However, building such an efficient KV caching system
for multi-turn conversations presents significant challenges.

Firstly, the KV caching system serves as the external stor-
age for GPUs and is attached to the GPUs via low-speed links.
The use of the KV caching system brings about significant ac-
cess overhead due to the need to transfer KV caches between
HBMs and the KV caching system. The access overhead of
KV caches is in the critical path of inference execution. This
is because GPUs can only perform the computation of an
inference job after successfully loading its corresponding KV
cache into HBMs. Likewise, the subsequent inference jobs
need to wait until the KV caches from the previous jobs are
moved out of the HBMs if the HBM space is not enough. To
reduce the KV cache loading overheads, CachedAttention
uses a layer-wise pre-loading scheme to overlap the time of
loading the KV cache with the inference computation layer by
layer. To reduce the KV cache saving overheads, CachedAt-
tention develops an asynchronous saving scheme that overlaps
the time of saving KV caches with the inference computation.

Secondly, the KV caches occupy a large amount of storage
space that continuously expands during conversations. Prior
works have attempted to reduce the inefficiency of repetitive
KV computation by retaining the KV caches across multi-
turn conversations in HBMs [19, 66]. However, this quickly
exhausts the limited HBM capacity. We present an example of
LLaMA-65B in Section 2.3, which shows the KV caches fully
occupy the free space within the HBMs in 14 seconds. To
address this challenge, CachedAttention explores and exploits
slower but larger-capacity storage hierarchies than HBMs,
including host memory and disks, to provide adequate storage
space for caching KV caches.

Thirdly, since disks have much larger capacity than the
host memory (tens of TBs v.s. several hundreds of GBs), most
KV caches are retained in disks for CachedAttention. As con-
versation requests arrive randomly, their corresponding KV
caches are more likely to be located in disks, resulting in
poor access performance. To address this problem, CachedAt-
tention uses a scheduler-aware KV cache fetching scheme.
This scheme pre-fetches the KV caches that are likely to
be accessed from disks to the host memory, by utilizing the
hints received from the interface job scheduler. When the free
space of the host memory is not enough, CachedAttention
also adopts a scheduler-aware eviction scheme to efficiently
identify the most suitable KV caches in memory and evict
them to disks or out of the system.

Finally, when a conversation session surpasses the limit
of the context window of LLMs, e.g., 4K in LLaMA-2 [48],
LLMs generally truncate the oldest tokens and limit the con-
text to the most recent tokens [33]. This truncation makes all
saved KV caches of that conversation in CachedAttention in-
valid since the positional information of all tokens embedded
in the KV cache is changed. To overcome this issue, Cache-
dAttention decouples the positional encoding from the KV
caches when saving them. It re-embeds the positional encod-

ing into KV caches when loading them. After decoupling,
truncation can be directly applied to the KV caches, thereby
ensuring the reusability of the saved KV caches.

We implement the CachedAttention and evaluate it us-
ing the real ShareGPT dataset [41]. Extensive experimental
results demonstrate that CachedAttention significantly de-
creases the time to the first token (TTFT) by up to 88% and
improves the prompt prefilling throughput by 8.2× for multi-
turn conversations. It also reduces the end-to-end inference
cost by up to 56%. For long sequence inference, CachedAtten-
tion reduces the TTFT by up to 95% and improves the prompt
prefilling throughput by 22×. To summarize, this paper makes
the following contributions:

• We investigate the recomputation overheads of KV
caches in LLMs across conversation turns and iden-
tify the challenges associated with retaining KV caches
across multi-turn conversations.

• We propose CachedAttention, a new attention that allows
the reuse of the KV caches for any ensuing conversa-
tion turns of the same session, achieving a significant
reduction in the recomputation overhead of KV caches
in LLMs.

• To improve the efficiency of CachedAttention, we de-
sign overlapped KV cache access, hierarchical KV cache
placement, and positional encoding decoupled KV cache
truncation schemes.

• We thoroughly evaluate CachedAttention with real
datasets to demonstrate its efficacy and efficiency.

2 Background and Motivation

This section begins with an overview of the fundamentals of
generative LLM inference. It then delves into the inefficien-
cies that exist in LLMs during multi-turn conversations. The
section ends with a discussion of the design opportunities
for dealing with these inefficiencies and the challenges faced
during the design of such a system.

2.1 Generative LLM Inference Basics
Transformer Architecture. The transformer has emerged
as the widely accepted standard in generative LLM infer-
ence. The widely used LLMs like GPTs [32] and LLa-
MAs [47, 48] are built upon the autoregressive transformer
architecture [17, 50]. During inference, these models pro-
cess the prompt of the users and generate a response. The
prompt is processed as a sequence of input tokens, and the
response is generated by the model predicting the probabil-
ity of subsequent tokens using the context of all the prior
tokens. The transformer model consists of a chain of l trans-
former layers. Each transformer layer is comprised of two
steps, self-attention and feed-forward network (FFN).

2

Layers

X [1:s]

KV Cache[1:s]
token [s+1]

Layers

KV Cache[1:s]
t [s+2]

KV Cache[s+1]
t [s+2] = EOF

STOP

START

Prefilling Decoding

(a) Two-phase illustration.

1K 2K 4K
Input length

0

5

10

La
te
nc

y
(s
)

prefilling decoding/token

(b) Execution latency.

Figure 1: Prefilling and decoding phases. Latency measured
for LLaMA-70B of batch size 8 on 4 A100 GPUs.

For the input token list X = [x1,x2, ...xs], each layer applies
a series of projections on each token in X using the weights
WQ,WK ,WV . This generates the elements in the set of queries,
keys, and values, referred to as Q, K, and V respectively:

Q =WQX ,K =WKX ,V =WV X

Subsequently, attention scores are computed via Q, K, and V :

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V

where
√

dk is the dimension of the key vector k. Finally, the
projection operation applies a linear transformation on atten-
tion scores. This projected result is handed to the FFN layer.
The result from FFN is passed on to the next transformer layer
as input. Finally, after the input has been processed through
all l transformer layers, the output is a probability vector that
marks out the most probable output tokens.

KV Cache: Within the entire process above, each token
produces intermediate K and V tensors. When generating
subsequent tokens, all KV tensors of preceding tokens are
necessary for computing the self-attention. These K and V
tensors are generally cached in GPUs, referred to as the KV
cache. The KV cache typically has a large footprint. For
example, GPT-3 [11, 32] generates a 4.5MB KV cache for
each token. The size of KV cache linearly increases with the
number of prompt tokens. A conversation session containing
thousands of tokens will produce several GBs of KV cache.

2.2 Autoregressive Generation
As illustrated in Figure 1a, transformer-based generation can
logically be identified as two distinctive phases [1].

The prefilling phase. Given a request prompt, the gener-
ation takes the prompt token list X = [x1,x2, ...xs] as input
and then proceeds to compute the token xs+1. This process
generates a series of KVs, specifically forming the KV cache
ranging from 1 to s, which are used for the decoding phase.

The decoding phase. The decoding phase generates output
tokens with autoregressive iterations. The decoding phase
takes token s+1 and the KV cache [1 : s] from the prefilling

1 2 5 10 15
Conversation turn number

0.00

0.25

0.50

0.75

1.00

CD
F

(a) CDF for conversation turn number

0 2K 4K 8K 12K 16K
Token number

0.00

0.25

0.50

0.75

1.00

CD
F

(b) CDF for session length

Figure 2: (a) Distribution for conversation turn number in
ShareGPT. (b) The session length distribution of ShareGPT.

q1 a1Turn 1

q1 a1 q2 a2

q1 a1 q2 a2 q3 a3

Turn 2

Turn 3

tim
e

Turn 3 prefill decoding

q1 a1Turn 1

q1 a1 q2 a2

q1 a1 q2 a2 q3 a3

Turn 2

Turn 3

tim
e

prefill

decoding

loading KV
(a) Recomputation (b) CachedAttention

Figure 3: Comparison of recomputation and CachedAttention.

phase as input to compute the KV cache s+1 and the token
s+2. The generation process iteratively continues until the
generated token is <eos> or the iteration number reaches the
maximum allowed generation number. The decoding phase
only happens sequentially due to the heavy data dependency
on the previous iteration.

The two phases present significantly different characteris-
tics in terms of execution time. The prefilling phase computes
the KV cache in parallel. The duration of this phase is closely
tied to the number of prompt tokens provided as input. As
shown in Figure 1b, the execution time of the prefilling phase
increases as the number of input tokens grows. In contrast,
the decoding phase only performs computation for a single
token in each iteration, which makes the computation time
for each iteration relatively constant.

2.3 Multi-turn Conversation Inference

Engaging humans in multi-turn conversations is a fundamen-
tal feature of modern LLMs. A multi-turn conversation ses-
sion consists of a series of continuous conversations, denoted
as D = [d1,d2, ...dN]. In each conversation d j, a user inputs
a new question or command q j and then awaits the response
a j from the LLM. To maintain a coherent context and un-
derstanding of the conversation session, the LLM generates
aN+1 based on both the historical tokens from all previous
conversation turns d[1 : N] and the input tokens of the current
turn, denoted as q1a1q2a2...qNaNqN+1.

Based on the analysis of ShareGPT [41, 65], a real dataset
collected from ChatGPT that includes more than 100K conver-
sations, we observe that 78% of conversations are multi-turn,
as shown in Figure 2a. Moreover, 72% of conversations have

3

1 2 3 4 5 6 7 8
Conversation Turns

0

2K

4K

6K

8K

To
ke

ns

(a)

hist tokens new tokens

1 2 3 4 5 6 7 8
Conversation Turns

0.0

0.5

1.0

GP
U

tim
e

(s
)

gap: 98%

(b)

prefill all prefill new

0

50

100 Recom
p ratio (%

)

Recomp ratio

Figure 4: Recomputation inefficiencies. (a) The average num-
bers of historical tokens and new tokens in different turns of
ShareGPT. (b) The GPU time for prefilling all tokens and
only new input tokens in ShareGPT with LLaMA-65B.

more than 4K tokens as shown in Figure 2b.
However, executing multi-turn conversations in current

LLM serving engines is inefficient due to the repetitive com-
putation of KV caches across multiple conversation turns.
As shown in Figure 3a, in the conversation turn 1, the LLM
serving engine generates the KV cache of q1 and a1. After
finishing turn 1, the LLM serving engine discards the KV
cache to reclaim the HBM space. In turn 2, the LLM serving
engine re-generates the KV cache of q1 and a1. In turn 3,
the KV cache of q1, a1, q2, and a2 is re-generated. As the
session expands, the historical tokens keep accumulating and
the amount of repetitive computation significantly increases.
As shown in Figure 4a, with the increase of the conversation
turns, the percentage of historical tokens will be more than
98% in a new conversation. The repetitive computation time
occupies 98% of the prefilling time (a.k.a., time to the first
token) in the new conversation, as shown in Figure 4b.

2.4 Opportunities and Challenges
Based on the analysis above, we observe that if the KV
caches can be reused across multiple turns of conversations,
up to 98% of prefilling cost can be reduced. Specifically,
the KV caches of historical conversations can be saved in a
KV caching system out of GPUs. Upon the reactivation of a
conversation session, GPUs load the associated KV caches
from the KV caching system and reuse them for the new-turn
conversation. Nevertheless, to build an efficient KV caching
system, there exist many significant challenges.

1) High KV cache access overheads. During the inference,
the computation of GPUs can be blocked due to waiting for
the KV caches to be loaded from the KV caching system.
The block time is non-negligible compared to the repetitive
computation time of the KV cache, making the KV caching
solution lose efficacy. For example, we evaluate the inference
time of the LLaMA-65B model using 4 NVIDIA A100 GPUs
and observe that prefilling 2K tokens of a prompt consumes
about 360 ms. In contrast, loading the KV cache of the 2K

tokens (5GB) from host memory to GPUs consumes about
192 ms (the GPU system with 16 lanes of PCIe Gen4 has
about 26GB/s of effective data transmission bandwidth).

2) High storage capacity requirement of KV caches. Stor-
ing the KV cache for each request consumes a substantial
amount of storage space. For instance, when using 4 A100
GPUs each with 80GB HBM to run LLaMA-65B, prefilling
2K tokens consumes about 360 ms. This process generates
5GB of KV cache, indicating the generation speed of the
KV cache is about 13.9GB/s. As 130GB of HBM space is
allocated to store the model, the remaining 190GB of free
HBM space will be fully occupied by the KV cache within
14 seconds. If spilling the KV cache to the host memory (e.g.,
512GB space), the host memory will be filled in less than 1
minute. Using disks to save the KV cache can extend the stor-
age space. However, this incurs worse access performance, as
presented below.

3) Suitable placement of KV caches in different hierar-
chies. Disks provide much larger capacity than the host mem-
ory (tens of TBs v.s. several hundreds of GBs). Thus most KV
caches are retained in disks. However, the disks have an ac-
cess bandwidth of less than 5GB/s. As conversation requests
arrive randomly, their corresponding KV caches are more
likely to be located in disks when being accessed, resulting in
poor inference performance. It is essential to ensure that the
KV cache to be accessed in the immediate future is always
placed in the host memory instead of disks.

4) Unexpected invalidation of the saved KV caches. With
the number of conversation turns increasing, the historical
tokens can exceed the context window limitation. LLM serv-
ing engines generally perform token truncation [16, 33] to
reduce the input prompt. The truncation has no impact on
previous LLM serving engines since they always recompute
the KV cache based on the input prompt following trunca-
tion. However, the truncation makes the KV caches saved in
the KV caching system invalid, since the position of each to-
ken is changed after truncation. Thus it cannot match the old
embedded positional encoding in the saved KV cache. Such
context window overflow can occur with a high probability.
As shown in Figure 2b, 84% and 69% of conversation ses-
sions have a context longer than 2K and 4K, respectively. It
means that when using the LLaMA-2 family with 4K context
window [48], the context window overflow occurs in 69% of
conversation sessions. When using the OPT family with 2K
context window [62], the context window overflow occurs in
84% of conversation sessions.

3 The CachedAttention Design

3.1 Overview
We propose a new attention mechanism, called CachedAtten-
tion, to save the KV caches for all conversations, enabling the
reuse of historical KV caches across multi-turn conversations,

4

CachedAttention
Controller GPU Cluster

Job
Queue

Job Scheduler

KV Access
(§3.2)

KV Cache Manager

KV Placement
(§3.3)

GPU 0 GPU 1
HBM 0 HBM 1

Disks

Host memory

Fetch (§3.3.1) Evict (§3.3.2)

Load (§3.2.1) Save (§3.2.2)

KV Cache Storage

Figure 5: The system architecture of CachedAttention.

instead of discarding them as in conventional attention mech-
anisms. Specifically, CachedAttention saves the KV cache in
a KV caching system when the associated conversation ses-
sion is inactive. If the same conversation session is activated
in the future, its KV cache is fetched from the KV caching
system and reused for inference. By doing so, CachedAtten-
tion only executes partial prefilling, on just the new tokens
input in the new turn of conversation, rather than prefilling
all historical tokens. As shown in Figure 3b, when executing
the inference of Turn 3, the KV cache of q1, a1, q2, and a2
is reused and only q3 needs to be prefilled. CachedAttention
effectively eliminates the repetitive computation overhead of
the historical tokens, thereby reducing the prefilling cost.

Figure 5 shows the architectural overview of CachedAt-
tention. It maintains a hierarchical KV caching system with
efficient KV cache access, placement, and truncation tech-
niques to address the challenges mentioned in Section 2.4.

For Challenge 1, to reduce the overhead of KV cache load-
ing from the KV caching system into HBMs, CachedAtten-
tion leverages a layer-wise pre-loading scheme to overlap the
KV cache loading with the inference computation. To reduce
the KV cache saving overhead from HBMs to host memory,
CachedAttention leverages an asynchronous saving scheme
to overlap the saving with the inference computation. (§3.2).

For Challenges 2 and 3, to enlarge the available storage
space for caching KV caches, CachedAttention employs
multi-tier cost-effective storage mediums, i.e., host memory
and disks. To reduce the impact of accessing slow disks on the
inference performance, we present a scheduler-aware fetch-
ing scheme that leverages the hints from the job scheduler to
prefetch KV caches to be accessed from disks to host memory.
Meanwhile, to efficiently leverage the limited host memory
space, we present a scheduler-aware eviction scheme that
identifies the least valuable KV caches and evicts them to
disks or out of the caching system (§3.3).

For Challenge 4, to deal with the invalidation of KV caches
saved in CachedAttention due to context window overflow,
we utilize a positional encoding decoupled truncation scheme
to save the KV caches without positional encoding embedded,

and hence support the truncation directly on KV caches. When
loading the KV cache, CachedAttention re-embeds the new
positional encoding into the KV caches (§3.4).

3.2 Overlapped KV Cache Access

The use of slower memory/storage hierarchies results in sig-
nificant access overhead because KV caches need to be trans-
ferred between HBMs and the slower mediums, blocking the
inference and causing a waste of computational resources.
To reduce the KV cache loading overheads from host mem-
ory to HBMs, CachedAttention uses a layer-wise pre-loading
scheme to overlap the loading of the KV cache with the in-
ference computation layer by layer (§3.2.1). To reduce the
KV cache saving overheads, CachedAttention develops an
asynchronous saving scheme that overlaps the saving of KV
caches with the inference computation (§3.2.2).

3.2.1 Layer-wise Pre-loading from Memory to HBMs

CachedAttention loads KV caches from the host memory to
HBMs, resulting in high data access overhead. The access pro-
cess is in the critical path of the inference execution as shown
in Figure 6a, since GPUs must rely on the KV cache to exe-
cute the inference computation. This overhead becomes more
significant as the size of the KV cache increases, as discussed
in Section 2.4. To eliminate this overhead, CachedAttention
employs a layer-wise pre-loading scheme to mitigate the im-
pact. The main idea is to overlap the loading of the KV cache
with the prefilling computation of new input tokens for the
conversation. In particular, the LLM model is chained by mul-
tiple transformer layers, each with its own KV cache. As the
GPU executes a layer, the KV cache needed by the subsequent
layers can be loaded from the host memory concurrently. By
doing so, when the GPU starts computing the self-attention
for a layer, the corresponding KV cache of the layer is already
in the HBM execution buffer.

Figure 6b illustrates how the layer-wise pre-loading scheme
overlaps the KV cache fetching time with the computation
time. The example applies a 3-layer model for simplicity.
Before initiating the computation of Layer 1, the KV cache
for this layer must first be prepared in the HBM. The read
stream first issues a KV cache loading operation to read the
KV cache for Layer 1 into the HBM execution buffer. The
execution stream then starts computing Layer 1. While the
execution stream is computing one layer, the read stream
concurrently loads the KV cache for the next layers. Thus,
the loading is overlapped with the computation. However, we
observe that a gap still exists between the last job and the first
layer of the current job, since the loading can only commence
once the HBM execution buffer is available, i.e., the last job is
finished. To further mitigate the gap between the last job and
the first layer of the current job, CachedAttention reserves an
HBM read buffer to eliminate the gap. Specifically, as shown

5

Execution
Stream
Read
Stream

Last job Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Gap

(a) Baseline: KV cache loading without concurrent operations.
Execution
Stream
Read
Stream

Last job Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

(b) Layer-wise pre-loading without buffer.

Execution
Stream
Read
Stream

Last job Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

(c) Layer-wise pre-loading with buffer.

Figure 6: Layer-wise KV cache pre-loading. Blue blocks
indicate the execution of each transformer layer. Red blocks
indicate the KV cache loading of each transformer layer.

Execution
Stream
Read
Stream

Last job Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

(a) Layer-wise pre-loading with imperfect overlapping.
Execution
Stream
Read
Stream

Last job Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

(b) Perfect pre-loading with a customized larger buffer.

Figure 7: Layer-wise KV cache pre-loading.

in Figure 6c, with the read buffer, the read stream doesn’t
have to wait for the release of the execution buffer from the
last job. The read stream can start the pre-loading while the
last job is running.

However, pre-loading may fail to fully overlap with the
computation if the KV cache loading time is longer than the
prefilling computation time. As shown in Figure 7a, multi-
ple gaps exist between the computation of layers because
the KV cache fetching time for each layer exceeds the com-
putation time for each layer, resulting in imperfect overlap-
ping. The overhead can be further minimized by employing a
customized larger pre-loading buffer. With the larger buffer,
pre-loading can be issued with an earlier start. For instance,
as shown in Figure 7b, with the larger buffer, pre-loading is
allowed to pre-load KV cache for more layers and thus the
gaps between layers can be overlapped. Let Tload , Tpre f , Lhist
and Lnew denote the access time of the KV cache for a token,
the prefilling time for a token, the length of historical tokens
in a session, and the length of new input tokens in the con-
versation, respectively. Imperfect overlapping happens when
TloadLhist > Tpre f Lnew, which indicates that the transmission
time is larger than the partial prefilling time. The buffer is
used to fill up the time gap TloadLhist −Tpre f Lnew. Combined

Execution
Stream
Write
Stream

Layer 1 Layer 2 Layer 3 L1 L2 L3 L1 L2 L3

write

prefill decode

Gap

(a) Baseline: KV cache saving without concurrent operations.

Execution
Stream
Write
Stream

Layer 1 Layer 2 Layer 3 L1 L2 L3 L1 L2 L3

prefill decode

(b) Asynchronous KV cache saving with overlapping.

Figure 8: Asynchronous KV cache saving.

with the PCIe bandwidth B, the buffer size can be set by the
following formula: Sbu f = B(TloadLhist −Tpre f Lnew).

3.2.2 Asynchronous Saving from HBMs to Memory

CachedAttention needs to save KV caches to host memory
to enable the reuse of the KV caches across conversations. A
baseline method to save the KV caches is to write all produced
KV caches together after the round of conversation ends. This
method however potentially delays the execution of the next
scheduled jobs since the KV saving time is on the critical path
of inference, as shown in Figure 8a. To reduce this overhead,
CachedAttention incorporates an asynchronous KV cache
saving scheme to overlap the KV cache write-back with the
computation, which also considers the different characteris-
tics of prefilling and decoding phases to perform different
overlapping mechanisms.

Specifically, the generation speeds of KV caches at the
prefilling and decoding phases are different. The prefilling
phase processes tokens concurrently, thus generating substan-
tial volumes of KV cache within a restricted timeframe. In
contrast, the decoding phase generates the KV cache of one
token at a time. As shown in Figure 8b, for the prefilling
phase, as each self-attention operation can produce a signif-
icant amount of KV cache, the write stream retains the KV
cache layer by layer. The KV cache produced by the prefilling
phase can be overlapped with the decoding phase. For the
decoding phase, as the KV cache is iteratively produced, the
write stream writes back the KV cache layer by layer while
decoding. To avoid getting stuck if the KV cached is not fully
written back when the decoding is already finished, we also
reserve an HBM write buffer to cover such cases similar to the
read buffer used in the KV cache prefetching. The unfinished
KV caches are temporarily moved to the write buffer to avoid
blocking the execution of the next job.

3.3 Hierarchical KV Cache Placement

CachedAttention leverages both host memory and disks to
expand the available space for KV cache storage. The access
speed of host memory, i.e., DRAM, is much higher than disks,

6

i.e., SSDs, (tens of GB/s v.s. several GB/s). If the KV caches
to be accessed are always found in the host memory instead of
disks, the access performance of KV caches will be optimal.
To achieve this, CachedAttention applies a scheduler-aware
fetching scheme to pre-fetch the KV caches from disks to
host memory, ensuring KV cache access at the optimal speed
(§3.3.1), and a scheduler-aware eviction scheme to evict suit-
able KV caches from host memory to disks (§3.3.2).

3.3.1 Scheduler-aware Fetching from Disks to Memory

Since disks have much larger capacity than the host memory
(tens of TBs v.s. several hundreds of GBs), most KV caches
are retained in disks for CachedAttention. As conversation
requests arrive randomly, their corresponding KV caches are
more likely to be located in disks, resulting in poor access
performance.

To address the problem, we leverage a scheduler-aware
KV cache fetching scheme to pre-fetch the KV caches to be
accessed from disks to the host memory. This is done by uti-
lizing the hints from the inference job scheduler. Specifically,
the job scheduler maintains a job queue, thus having the full
knowledge of waiting jobs. CachedAttention applies a look-
ahead prefetching window to watch for the waiting jobs to
be executed. If the KV cache of the waiting jobs is hit in the
disks, CachedAttention will pre-fetch the KV cache of wait-
ing jobs from the disks to host memory before these waiting
jobs are executed. The length of the look-ahead prefetching
window is determined by the available capacity in the host
memory. Given the available memory capacity for prefetching
Cmem and the average KV size of a session Skv, the prefetching
window length is Lpw =Cmem/Skv.

A scheduler-aware fetching example is shown in Figure 9.
As Job 1 is executing, the KV cache manager applies a look-
ahead window size of 2 (the host memory has 2 KV cache
slots for the KV cache fetching) to check the KV cache hit
status of the waiting Jobs 2-3. The KV cache for Job 2 is hit in
the host memory but the KV cache for Job 3 is not in the host
memory. Then the KV cache fetching threads start fetching
the KV cache for Job 3 from disks to the host memory.

Note that CachedAttention includes a host memory buffer
that allows for seamless fetching of KV caches from disks
to memory, preventing any delays when the host memory is
full. When the capacity of the free memory reaches a defined
threshold, CachedAttention triggers a KV eviction from host
memory to disks to ensure the constant availability of the host
memory buffer. The eviction process from host memory to
disks is presented in the next subsection.

3.3.2 Scheduler-aware Eviction from Memory to Disks

When the free space in the host memory is exhausted, we
need to evict some KV caches from the host memory to disks.
Meanwhile, if the disks are full, we also need to evict some

Job 1

KV 3

Timeline

DRAM

disks -> dram

Job
Queue Job 2Job 3Job 4Job 5Job 9 Job 8 Job 7 Job 6

KV 4 KV 2 KV 1 buf

KV 9 KV 8 KV 7 KV 3

eviction window, size: 6

prefetching window, size: 2

head

KV 4dram -> disksdisks

execution

cache use sys use

cache use

Figure 9: Scheduler-aware KV cache fetching and eviction.

KV caches stored in the disks out of the system. Therefore,
it is important to carefully choose the suitable KV cache
candidates to be evicted for achieving a high cache hit rate.

Different from existing cache eviction strategies, such
as the least-recently-used (LRU) [49], first-in-first-out
(FIFO) [9], and their variants, which solely rely on the histor-
ical access information of the KV caches, CachedAttention
presents a scheduler-aware eviction scheme which can fur-
ther leverage the future access information of KV caches
to achieve a higher cache hit rate. The job queue in the job
scheduler gives us the opportunity to achieve this. Specifically,
CachedAttention maintains a look-ahead eviction window in
the job queue. The maximum length of the look-ahead evic-
tion window is determined by the total storage capacity of the
KV caching system. Assume the total available capacity in
the disks is Cdisk. The look-ahead eviction window length is
(Cmem +Cdisk)/Skv. When CachedAttention attempts to evict
one item out of the KV caching system, if finding the item
to be evicted in the look-ahead eviction window, the item is
exempted. When CachedAttention evicts one item from the
host memory to disks, the item located at the tail of the look-
ahead eviction window has a higher priority to be evicted.
Note that one item corresponds to all KV caches associated
with a conversation session, which is the minimal eviction
and fetching granularity in CachedAttention. This is because
the KV cache in the same conversation session is either all
used or none of it is used.

A scheduler-aware eviction example is shown in Figure 9.
When the KV cache of Job 3 is chosen to be migrated to
the host memory, the buffer will be utilized. To maintain a
buffer in the host memory, CachedAttention needs to evict KV
caches from the host memory to the disks. CachedAttention
employs a look-ahead eviction window of size 6 to monitor
the KV cache status of the jobs. First, it finds that the KV
caches in the host memory all have an associated job in the
job queue. It then continues scanning the look-ahead eviction
window from tail to head and considers the jobs near the tail
to have higher priority to be evicted. Therefore, the KV cache
for Job 4 is selected to be evicted from the host memory to
the disks. Since the disks are also full, the scanning process

7

New Tokens

new KV cache New KV cache

Prompt

Truncated
Prompt

KV cache

truncation

4K

2K

New Tokens

KV cache New KV cachetruncation

4K

2K
(a) baseline (b) CachedAttention

Figure 10: Illustration of managing context window overflow.
Context window size: 4K, truncation ratio: 2K. (a) Baseline.
Token truncation [33]. (b) KV cache truncation.

identifies that the last arrived Job 9 in the job queue is the
most suitable candidate to be evicted. Finally, the KV cache
for Job 4 is moved to the location previously occupied by Job
9.

3.4 Decoupled KV Cache Truncation

When the historical tokens exceed the limitation of the con-
text window, LLM serving engines generally perform token
truncation [33]. As shown in Figure 10a, the context window
size is 4K. Once the context window overflows, the LLM
serving engines cut off the first 2K tokens of the prompt. The
truncation has no impact on previous LLM serving engines
since they always recompute the KV cache based on the in-
put prompt, regardless of truncation. However, the truncation
makes the KV caches stored in CachedAttention invalid, sig-
nificantly reducing the efficiency of CachedAttention. This is
due to the positional encoding embedded in the KV caches.
On performing token truncation on the prompt, the position
of each token is changed. The positional encoding embedded
in the KV caches cannot be modified to match the positions
of tokens in the prompt, making the KV caches invalid.

To address this problem, CachedAttention enables the
KV caches after truncation to be still valid via decoupling
the positional encoding. CachedAttention needs to work
with the relative position encoding (RPE) [45, 47, 57]. Un-
like the absolute positional encoding (APE) in which posi-
tional encodings are added to the input, RPE directly embeds
the positional encodings in the query (Q) and key (K) vec-
tors, as shown in Figure 11b. Extensive research shows that
RPE allows LLMs to learn from longer data sequences than
APE [12, 50, 63]. Therefore, RPE is widely used in modern
LLMs, e.g., LLaMA [47], T5 [58], Falcon [36], Mistral [20],
Mixtral [21] and Transformer-XL [8]. By simply moving the
time of caching KVs before embedding positional encodings
in RPE as shown in Figure 11c, CachedAttention can store
the KVs without embedded positional encodings in the KV
caching system. When reusing the KVs in CachedAttention,
the KVs are embedded with the new positional encodings and
further used for the following inference.

Figure 12 provides an example of how CachedAttention
supports KV cache truncation. CachedAttention stores the KV

Input

k v q
wk wv wq

Input

k v q
wk wv wq

Input

k v q
wk wv wq

KC VC VCKC

KC VC

KC K cache VC V cache positional
encoding

(a) (b) (c)

Figure 11: (a) absolute positional encoding. (b) relative po-
sitional encoding. (c) KV cache with decoupled positional
encoding.

Fetching

pos [0:2048] pos [0:1536]
+ +

Position
(on key)
KV

KV cache truncation

DRAM
Storing

to infer

Figure 12: Illustration of KV cache truncation with Cache-
dAttention.

cache without the positional encodings. In the cases where
KV cache truncation becomes necessary, the LLM engine
retrieves the truncated KV cache (i.e., KV [0:1536]) and loads
it to the HBM. The new positional encodings are subsequently
applied to the KV cache.

Note that CachedAttention also allows for selective preser-
vation of certain KV cache with important scores, e.g., the
initial tokens [57] or important tokens [13, 25, 64], to further
improve the generation quality of LLMs.

4 Performance Evaluation

4.1 Experimental Setup

Testbeds. All our experiments are performed on 4 NVIDIA
A100 GPUs, each with 80GB HBM. The system is equipped
with 128GB DRAM and 10TB SSDs. GPUs are connected to
the host via PCIe Gen 4.

We implement CachedAttention in Pytorch and Python.
The host memory and disks are managed in the form of blocks
to improve storage utilization, similar to [22]. Our internal
storage allocator allocates and deallocates storage blocks on
demand. For the model executor, CachedAttention integrates
the implementation of popular LLMs such as LLaMA [47]
and Falcon [36] using Pytorch [34] and Transformers [54].
NCCL library [31] is applied for synchronization of the par-
allel GPU workers. Dedicated CUDA streams are used for
moving data between the GPUs and the host memory, overlap-
ping the computation with proactive swapping. Separate IO
threads migrate data between the host memory and the disks,
overlapping the execution with the KV cache migrations.

8

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

25

50

75

100

Hi
t R

at
e

(%
)

Figure 13: Cache hit rate.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0.0

0.5

1.0

1.5

TT
FT

 (s
)

RE CA

Figure 14: Time to first token.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

1K

2K

3K

Pr
ef

ill
Th

ro
ug

hp
ut

 (t
/s

) RE CA

Figure 15: Prefill throughput.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

10

20

Ti
m

e
(H

)

RE Prefill
RE Decode

RE Overflow
CA Prefill

CA Decode

2.7X 1.6X 2.2X 1.7X

Figure 16: GPU time.

Models. The experiments evaluate the open-sourced
LLaMA-1 model with 65B [47], LLaMA-2 models [48]
with 13B, 70B, and Falcon 40B [36]. All the models in our
experiments use FP16 with intermediate activation FP32,
aligned with prior systems [51, 60]. Unless specified other-
wise, LLaMA-13B operates on two GPUs with 24 batches,
while LLaMA-65B, LLaMA-70B, and Falcon-40B run on
four GPUs, handling 24 batches each.

Workloads. The workload is integrated from the ShareGPT
dataset [41, 65]. As there is no public request arrival times-
tamp available in the dataset, we generate request arrival times
based on the Poisson distribution with various arrival rates,
following prior works [22,55]. We set the number of different
sessions arriving per second according to a Poisson distribu-
tion (with λ = 1.0). 9K conversation sessions are used in the
experiments.

Baseline. We compare CachedAttention (CA) with re-
computation (RE). RE only keeps historical tokens of conver-
sation sessions. It discards KV caches after serving a conver-
sation and does not keep the KV cache while the conversation
session is inactive. When a conversation associated with a
particular session becomes active again, RE leverages the his-
torical tokens from that session to recompute their KV caches.
When the historical tokens exceed the context window limita-
tion, RE applies token truncation, same as the general LLM
services [33]. For simplicity, the token truncation ratio is set
to 0.5, implying that when an overflow occurs, the system
will discard the earliest half of the tokens.

4.2 End-to-end Performance

In the end-to-end experiments, we use 9K conversations from
ShareGPT and the average number of turns in these conversa-
tions is 3.51. Thus the total number of conversation turns is
about 32K. We warm up the KV caching system using the first
10K conversation turns and then evaluate the performance on
the following 22K turns.

Cache hit rate. We first present the cache hit rate in CA
since other performance metrics are closely related to it. Fig-
ure 13 shows the KV cache hit rates in CA for various LLMs.
CA exhibits high hit rates around 76%, 56% 87%, and 89%
for LLaMa-13B, LLaMA-65B, LLaMA-70B and Falcon-40B,

respectively. In contrast, we observe a relatively low hit rate of
LLaMA-65B. This discrepancy arises due to the larger storage
space required by LLaMA-65B for saving KV caches. Given
the same available storage space, CA accommodates fewer
sessions for LLaMA-65B, thereby limiting the hit rate. Specif-
ically, LLaMA-65B necessitates 2.5MB of space for each to-
ken in the KV cache, LLaMA-13B requires 0.78MB, LLaMA-
70B and Falcon-40B require only 0.31MB and 0.12MB of
space per token due to using the group query attention with a
GQA factor of 8 and 16, respectively.

Time to first token (TTFT). TTFT is an important metric
for quality of service in LLM serving [3, 35]. It indicates
how quickly users start seeing the output of LLMs after
entering their prompt. As shown in Figure 14, CA signifi-
cantly reduces the TTFT by 84%, 50%, 88% and 88% for
LLaMA-13B, LLaMA-65B, LLaMA-70B and Falcon-40B
respectively, in comparison to RE. This is because CA elimi-
nates a large amount of repetitive computation for generating
the KV caches of historical tokens in the prefilling phase.
Upon cache hits, the TTFT of CA only relies on the number
of newly input tokens in the new conversation turn.

Prefilling throughput. Prefilling throughput is the met-
ric to evaluate the speed of processing the prompt. Fig-
ure 15 shows the measured prefilling throughput. We observe
that CA delivers remarkable speedups of 6.3×, 2.0×, 8.1×
and 8.2× for LLaMA-13B, LLaMA-65B, LLaMA-70B, and
Falcon-40B respectively, when compared to RE. The improve-
ment of CA on prefilling throughput comes from the reduced
prefilling time. CA only prefills the new input of the new
conversation. Moreover, CA can load and reuse the histori-
cal KV caches from the KV caching system with layer-wise
pre-loading optimization. The historical KV cache loading
simultaneously occurs with the prefilling on the new input
tokens.

GPU time. Figure 16 shows the end-to-end GPU time to
finish all inference jobs in the workload. We observe that
CA achieves speedups of 2.7×, 1.6×, 2.2×, and 1.7× for
LLaMA-13B, LLaMA-65B, LLaMA-70B and Falcon-40B re-
spectively, compared to RE. The performance improvements
of CA are from two aspects, which are mitigation of recom-
puting KV caches of the historical tokens, and mitigation of
recomputing KV caches after context overflow. Regarding

9

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

100

200

300

400

Co
st

 ($
)

RE-GPU
CA-GPU

CA-Storage

Figure 17: Inference cost.

500/500 600/400 700/300 800/200 900/100
His Length / Prompt Length

0

1

2

3

To
ta

l P
re

fil
lin

g
Ti

m
e

(s
) RE

CA-Load KV Cache
CA-Prefill
CA

Figure 18: Recomputation v.s.
CachedAttention.

the mitigation of re-prefilling, CA efficiently saves the KV
cache in the KV caching system and loads it when necessary
for historical tokens. On the other hand, RE discards the KV
cache once a job is finished, requiring the redoing of prefilling
for every job to reproduce the KV cache. In terms of miti-
gating the recomputation of KV caches after context flow,
RE applies token truncation which invalidates the KV cache
for each truncation due to the embedded position encoding
in the KV caches. This prompts RE to recompute the KV
cache based on the truncated historical tokens. In contrast,
CA decouples the position information from the KV caches,
allowing direct truncation of the KV cache. This approach
avoids the recomputation of KV caches that RE requires.

Inference cost. We evaluate the resource cost based on
the on-demand price of AWS EC2 instances [5, 6], i.e.,
$5/hour per A100 GPU, $0.0088/hour/GB for DRAM and
$0.000082/hour/GB for SSD. Figure 17 shows the total costs
of different methods for completing the workload. Compared
to RE, CA achieves significant cost savings for LLaMA-13B,
LLaMA-65B, LLaMA-70B, and Falcon-40B, amounting to
56%, 31%, 49%, and 35%, respectively. These cost savings
primarily stem from the reduced GPU time, as CA effec-
tively reduces redundant prefilling for historical tokens and
recomputation costs during context overflow, as depicted in
Figure 16. CA employs cost-effective storage mediums in-
cluding host memory and disks to cache the KV caches dur-
ing inactive conversation sessions. The storage cost from the
host memory and disks constitutes 16.4%, 8.9%, 9.0%, and
8.9% of the total cost in CA for LLaMA-13B, LLaMA-65B,
LLaMA-70B, and Falcon-40B, respectively.

4.3 Ablation Studies
4.3.1 Recomputation v.s. CachedAttention

We investigate the prefilling performance of different meth-
ods under varying historic and new token ratios. Different
methods prefill the same 1K tokens under the batch size of
16 on an A100 GPU for LLaMA-13B. RE computes the KV
cache for all tokens, while CA loads the KV cache of histori-
cal tokens from the KV caching system and partially prefills
the new input tokens. For example, the setting 600/400 means

NO-PL PL-B0 PL-B5 PL-B10PL-B15
x

0.00

0.25

0.50

0.75

1.00

To
ta

l P
re

fil
lin

g
Ti

m
e

(s
) Computation Load KV Cache

Figure 19: CA with no pre-
loading v.s. CA pre-loading
with various buffer sizes.

1000 1200 1400 1600
Prompt Length

0.0

2.5

5.0

7.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Computation
Save KV Cache

CA

Figure 20: Performance im-
pact of using write overlap.

CA loads the KV cache of 600 tokens and computes the KV
cache for 400 tokens. Overall, CA outperforms RE in all
tested settings, as shown in Figure 18. This advantage be-
comes more pronounced as the percentage of newly input
tokens decreases (from 500 to 100), as depicted by the middle
bar of each bar group. Although the KV cache loading time
for CA gradually increases with the percentage of historical
tokens (from 500 to 900), the layer-wise pre-loading scheme
effectively eliminates this loading time, as demonstrated by
the third bar of each bar group. Note that when the KV cache
loading time exceeds the prefilling time (e.g., the second bar
of setting 900/100), CA can conceal the KV cache loading
time by enabling a read buffer. The impact of the read buffer
is evaluated in the next subsection.

4.3.2 Overlapped KV cache Access

This subsection evaluates the effectiveness of the proposed
overlapping access techniques for loading and saving KV
caches. The model used is LLaMA-13B with a single GPU
and the batch size is set to 16.

Layer-wise KV cache pre-loading. In the experiments,
we set the length of historical tokens to 1K and the length of
newly input tokens to 100 for investigating the effectiveness
of the lay-wise pre-loading scheme. The first bar in Figure 19,
i.e., NO-PL, shows the time of prefilling without the pre-
loading scheme that includes two parts: the KV cache loading
time and the computation time of the newly input tokens. The
following bars in Figure 19 show the prefilling time when
the layer-wise pre-loading scheme has different sizes of read
buffers. For clarity, we use the number of layers to represent
the buffer size, e.g., PL-B0 indicates no read buffer and PF-
B5 indicates a read buffer size of 5 layers of KV cache. We
observe although there is no read buffer, i.e., PL-B0, the pre-
loading scheme reduces the prefilling time by 35% compared
to NO-PL. PF-B15 perfectly overlaps the KV cache loading
time and reduces the prefilling time by 61% compared to
NO-PL.

Asynchronous KV cache saving. In the experiments, we
set different prompt lengths ranging from 1K to 1.6K and
the number of decoding steps to 20 for investigating the ef-

10

128G/2T 128G/5T 128G/10T
DRAM / SSD

0

25

50

75

100

Hi
t R

at
e

(%
)

CA-DRAM
CA-SSD

LRU-DRAM
LRU-SSD

FIFO-DRAM
FIFO-SSD

(a) Impact on hit rate.

128G/2T 128G/5T 128G/10T
DRAM / SSD

0.0

2.5

5.0

7.5

10.0

Ti
m

e
(H

)

CA LRU FIFO

(b) Impact on GPU time.

Figure 21: Comparison of the eviction algorithms under vari-
ous storage settings.

fectiveness of the asynchronous saving scheme. As shown
in Figure 20, we observe that the saving time increases as
the prompt length grows, since the size of the KV cache to
be saved increases. To mitigate the saving overhead, Cache-
dAttention employs the asynchronous saving scheme that
allows the KV cache saving to overlap with the execution of
the inference, reducing the overall execution time by 13% to
15%.

4.3.3 Scheduler-aware Fetching and Eviction

We investigate the effectiveness of the scheduler-aware fetch-
ing and eviction in CachedAttention upon improving the
cache hit rate. We compare the overall cache hit rates, DRAM
hit rates, and disk hit rates of CA and existing eviction policies
(including LRU and FIFO) across various storage configura-
tions.

As shown in Figure 21a, for the configuration of 128G/2T
that indicates 128GB DRAM and 2TB SSD, CA outperforms
LRU and FIFO in the overall cache hit rate by 22% and 18%,
respectively. With the increased SSD capacity (128G/10T),
CA achieves a remarkable hit rate of 76%, surpassing LRU
(31%) and FIFO (48%). CA achieves high overall hit rates be-
cause CA is aware of the future KV cache access information
to avoid evicting the KV caches that will be used in the future.
The higher hit rates are translated to the reduced GPU time as
shown in Figure 21b, where CA achieves speedup up to 1.9×.
Analyzing the breakdown of hit rate, for the configuration of
128G/2T, LRU and FIFO only achieve 0.2% and 0.4% (too
tiny to display) DRAM hit rates, with the remaining 4.2% and
8.9% being disk hit rates. Even with the overall hit rate in-
creasing to 31% and 48% respectively for the larger capacity
of 128G/10T, LRU and FIFO still exhibit limited DRAM hit
rates of approximately 0.4% and 0.8% respectively. This is
because LRU and FIFO lack awareness of future KV cache
information and cannot pre-fetch KV caches from disks to
host memory, thereby limiting their ability to improve DRAM
hit rates. In contrast, CA achieves a cache hit rate of up to
76%, with over 99.9% of the hits occurring in DRAM due to
its scheduler-aware policy.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

25

50

75

100

Hi
t R

at
e

(%
)

OF CA

(a) Impact on hit rate.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

5

10

15

Ti
m

e
(H

)

OF CA

(b) Impact on GPU time.

Figure 22: Context overflow impact.

4.3.4 Performance of Decoupled KV Cache Truncation

When the context window exceeds its limit, CachedAttention
truncates the KV cache directly, thus avoiding the need for
re-computation and reducing overhead. We evaluate the effec-
tiveness of the way CA used to manage the context overflow.
Specifically, we compare a baseline approach overflow (OF)
that embeds positional encoding within the KV caches, lead-
ing to the invalidation of KV caches in the KV caching system.
OF relegates context overflow to be managed by recomputa-
tion. This experiment uses 128GB DRAM and 10TB SSD. As
evident from Figure 22a, comparing OF with CA, the hit rates
decrease by 52%, 56%, 57%, 48% for LLaMA-13B, LLaMA-
65B, LLaMA-70B, and Falcon-40B, respectively. This decline
is attributed to the fact that if applying OF, every instance of
context overflow necessitates context truncation, thereby in-
validating the KV caches in the KV caching system. This
decrease in hit rate subsequently translates to the longer GPU
time as shown in Figure 22b.

CachedAttention ensures the validity of the saved KV
caches in the system when context overflow happens and
promises a higher hit rate and reduced GPU time. OF of
LLaMA-65B experiences a low hit rate due to its limited 2K
context window. After serving a conversation of the first turn,
the session easily reaches the context window limit, conse-
quently making the associated KV cache invalidate. Subse-
quently, the following conversations in the same session face
KV cache miss.

4.3.5 Accuracy of Decoupled Positional Encoding

To maintain the validity of the stored KV caches, CachedAt-
tention decouples positional encoding from the KV caches
and embeds the new positional encodings when reusing the
stored KV caches as presented in Section 3.4. We evaluate
the impact of the different schemes including CA, token trun-
cation (TT), and naive KV cache truncation (NKVT) on the
perplexity (PPL) and the accuracy of LLMs leveraging widely
used benchmarks. In situations where the number of histor-
ical tokens exceeds the context window limit, TT removes
the historical tokens and recomputes the KV caches for the
remaining tokens, and NKVT directly discards the KV caches

11

Table 1: PPL comparison of different methods.

Dataset Model CA TT NKVT

WikiText-2 LLaMA-7B 5.47 5.48 2198.7
LLaMA-13B 4.91 4.90 1647.7

PTB LLaMA-7B 8.48 8.49 2543.5
LLaMA-13B 7.61 7.60 1865.8

C4 LLaMA-7B 6.96 6.98 2343.5
LLaMA-13B 6.44 6.45 1745.6

associated with the positional encoding and utilizes the trun-
cated KV caches instead.

PPL. PPL is a metric used to evaluate the quality of a model
in generating tokens [14, 57]. Lower PPL values indicate that
the model is better at predicting the text and demonstrates a
greater understanding of the language. Table 1 shows the PPL
comparison of LLaMA-7B and LLaMA-13B in CA, TT, and
NKVT settings using datasets WikiText-2 [15], C4 [38], and
PTB [27]. TT consistently achieves a low PPL by recomputing
KV caches after context window overflow. CA also maintains
a low PPL, comparable to TT (with a difference of < 0.02), by
incorporating new positional encodings into the KV caches
after truncation. In contrast, NKVT exhibits a high PPL (>
103) due to the coupling of positional encoding within its KV
caches. Directly truncating the KV caches would scramble
the coupled positional information, resulting in the models’
failure to maintain a low PPL.

Accuracy. To analyze the accuracy of the models in answer-
ing questions after truncation, we conduct experiments using
the MMLU [18], LongEval [23, 57], and PIQA [7] bench-
marks. Specifically, we first input a long text to simulate the
overflow of historical inputs to trigger the truncation opera-
tion, and then append the questions from the benchmarks as
new inputs afterward. As shown in Table 2, both CA and TT
provide high comparable accuracy. TT achieves high accuracy
by paying the recomputation cost for context window over-
flow, while our CA avoids this cost and still maintains high
accuracy. In contrast, the NKVT has a much lower accuracy
than CA and TT because the coupled positional encoding
after KV cache truncation is miscoded, which results in more
disruption to new inputs.

4.3.6 Performance for Long Sequence Inference

Modern LLMs continue to incorporate longer context win-
dows to accommodate a greater amount of information, em-
powering long sequence inference applications (e.g., docu-
ment understanding [59] and code understanding [29]). We
assess the efficacy of CachedAttention with models designed
for long sequence inference in these applications. Specifi-
cally, we deploy the Mistral-7B model [20] with a maximum
32K context window on one A100 GPU with 80GB HBM,

Table 2: Accuracy of different methods.

Benchmark Model CA TT NKVT

MMLU LLaMA-7B 43.7% 43.4% 21.8%
LLaMA-13B 52.3% 53.2% 29.6%

LongEval LLaMA-7B 66.0% 65.9% 12.0%
LLaMA-13B 68.0% 68.0% 14.0%

PIQA LLaMA-7B 77.1% 77.2% 48.9%
LLaMA-13B 80.5% 80.4% 50.2%

4K 8K 12K 16K 20K 24K 28K
Sequence Length

0.0

0.5

1.0

1.5

2.0

2.5

TT
FT

 (s
)

RE CA

(a) Impact on TTFT.

4K 8K 12K 16K 20K 24K 28K
Sequence Length

10K

100K

200K

300K

Pr
ef

ill
Th

ro
ug

hp
ut

 (t
/s

)

22
X

RE CA

(b) Impact on prefill throughput.

Figure 23: Prefilling performance of long sequence inference.

employing a GQA factor of 8 [2,20]. We evaluate a documen-
tation analysis application as an example. In this application,
users submit a series of analysis tasks for the same document,
forming a multi-turn conversation session. The size of the
document varies from 4K to 28K. Each session consists of 6
analysis tasks, with each task requiring an input of 256 tokens
and producing an output of 64 tokens. In the experiments,
we use a batch size of 1 and evaluate the performance of the
second and subsequent turns.

TTFT. Figure 23a shows the average TTFT for different
sequence lengths. The TTFT of RE gradually increases to
2.5s when the sequence length reaches 28K. In contrast, CA
has only about 0.12s of TTFT, resulting in a 95% reduction
in TTFT compared to RE.

Prefilling throughput. Figure 23b illustrates the measured
prefilling throughput. CA significantly improves the prefill-
ing throughput, achieving a speedup up to 22× compared to
RE. The prefilling throughput of RE cannot improve as the
sequence length grows due to being bounded by the com-
putational capability. CA observes a continuous increase in
the prefilling throughput as the sequence length grows by
efficiently reusing the historical KV cache.

GPU time. Figure 24a shows the average GPU time to com-
plete each analysis task. CA demonstrates consistent GPU
time savings compared to RE, regardless of the sequence
length. When the sequence length increases, RE requires more
prefilling time to recompute the KV caches, which accounts
for a substantial portion of the total GPU time, i.e., 41%, for
a sequence length of 28K. In contrast, CA efficiently reduces
prefilling costs by reusing KV caches, resulting in only 1.2%

12

4K 8K 12K 16K 20K 24K 28K
Sequence Length

0.0

2.5

5.0

7.5

GP
U

Ti
m

e
(s

)

Decoding RE Prefill CA prefill

(a) Impact on GPU time.

4K 8K 12K 16K 20K 24K 28K
Sequence Length

0

10

20

30

40

Ou
tp

ut
 T

hr
ou

gh
pu

t (
t/s

) RE CA

(b) Impact on output throughput.

Figure 24: Overall performance of long sequence inference.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Storage Capacity / DSpUT

0

25

50

75

100

Hi
t R

at
e

(%
)

(a) Impact on hit rate.

0.000.050.100.150.200.250.300.35
Storage Capacity / DSpUT

0.0K

0.5K

1.0K

1.5K

2.0K

Th
ro

ug
hp

ut
 (t

/s
)

(b) Impact on throughput.

Figure 25: Impact of storage capacity and the number of
distinct sessions.

of the GPU time being allocated to prefilling.
Output throughput. The overall output throughput is cal-

culated by the number of generated tokens divided by the
total processing time of a task, as shown in Figure 24b. As
the sequence length increases, both RE and CA experience a
decrease in throughput. This is attributed to the increased com-
putational demands for computing attention of the lengthy
sequence, resulting in a longer decoding time for each to-
ken. Notably, CA consistently surpasses RE in all scenarios,
demonstrating an improvement in output throughput of up
to 67%. These improvements in output throughput primarily
stem from the elimination of KV cache recomputation.

4.3.7 The Cache Capacity Requirement

In this subsection, we investigate how much cache capacity
CachedAttention needs to achieve a remarkable cache hit
rate. The cache capacity required is related to the maximum
number of distinct conversation sessions served by an LLM
serving system per unit time (denoted as DSpUT). The larger
the DSpUT value is, the more distinct sessions the system
handles per unit time, and the more KV cache storage space
is required. Moreover, due to the limitation of the maximum
context window, the maximum KV cache capacity required by
one conservation session is fixed, i.e., equal to the length of the
maximum context window multiplied by the KV size of each
token, which is denoted as CCpS. Thus the required maximum
cache capacity per unit time is CCpUT = DSSpUT ∗CCpS.
In CachedAttention, the KV cache of each session has a TTL
(time to live) that indicates its maximum saving time since

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

25

50

75

100

Hi
t R

at
e

(%
)

HBM HBM+DRAM CA

0.0 0.0 0.0 0.0

(a) Impact of caching storage
mediums on hit rates.

LLaMA
-13B

LLaMA
-65B

LLaMA
-70B

Falcon
-40B

0

5

10

15

20

Ti
m

e
(H

)

HBM HBM+DRAM CA

(b) Impact of caching storage
mediums on GPU time.

Figure 26: Performance under various caching configurations.

the last access. The TTL is set as the unit time mentioned
above. By configuring the cache capacity of CachedAttention
as CCpUT , we can achieve a cache hit rate of 100% if not
considering the newly arrived conversations. Nevertheless, to
achieve a high cache hit rate in real scenarios, we do not need
to configure such a large capacity since the hotness of cached
items is different.

To figure out the relationship between the required cache
capacity (RCC) and CCpUT , we evaluate the cache hit rate
and the decoding throughput under different ratios of RCC
to CCpUT . In the experiment, we set the TTL to one hour.
As shown in Figure 25a, when the ratio RCC/CCpUT is
0.1, we achieve the cache hit rate of 51%. When the ratio
RCC/CCpUT is 0.25, we achieve the cache hit rate of 98%.
As the hit rate reaches the peak, the throughput also meets its
peak, as shown in Figure 25b.

4.3.8 Impact of Caching Storage Mediums

Some existing works [19,30,66] employ only the HBM space
for caching the KV caches of multi-turn conversations. We
here compare the performance of mechanism caching KVs on
HBMs with that of CachedAttention caching KVs on DRAM
and SSDs. In the experiments, we configure the size of the
HBM cache as 10GB, the size of DRAM as 128GB, and the
size of SSDs as 10TB. Figure 26a shows cache hit rates and
inference performance of different mechanisms. The hit rate
of the HBM-only caching method is nearly 0% for all mod-
els due to the limited capacity of HBM. Using HBM with
DRAM improves the cache hit rate to 1.9%, 0.9%, 4.4%, and
11.2% for models LLaMA-13B, LLaMA-65B, LLaMA-70B
and Falcon-40B, respectively. In contrast, by further extend-
ing the cache capacity with SSDs, CachedAttention improves
the cache hit rate to 76%, 56%, 87%, and 89% for models
LLaMA-13B, LLaMA-65B, LLaMA-70B, and Falcon-40B,
respectively. With higher hit rates, CachedAttention signifi-
cantly improves the inference performance compared to the
HBM-only/HBM+DRAM policies as shown in Figure 26b.

13

5 Related Work

KV Cache Management. Within a single-turn conversation,
the KV cache is widely used for improving the performance
of the decoding phase [10, 44, 51, 53, 60, 66]. To reduce
the storage overhead of the KV cache on HBMs, existing
work employs quantization and compression techniques on
KV caches [13, 25, 57, 64]. To reduce the memory waste in-
curred by fragmentation, vLLM [22] takes inspiration from
virtual memory to allow the KV cache to use fine-granularity
non-continuous memory. These techniques are orthogonal to
CachedAttention, which focuses on multi-turn conversations.

LMDeploy [19] is an LLM inference framework that
caches the KV caches of multi-turn conversations on HBMs.
RadixAttention [66], ChunkAttention [59], and Pensieve [61]
are inference techniques that were developed concurrently
with CachedAttention. RadixAttention and ChunkAttention
optimize the inference tasks that share prompt prefixes. Tasks
with the same prompt prefixes share the same KV caches
to reduce the KV computation. Pensieve utilizes both GPU
and CPU memory to store KV caches for multi-turn con-
versations. Different from all these works, CachedAttention
exploits slower but larger storage hierarchies to save the KV
caches to achieve high cache hit rates as presented in Sec-
tion 4.3.8, and focuses on designing systemic techniques to
address the challenges of offloading to slower mediums.

Inference Parameter Offloading. FlexGen [42] offloads
both model weights and KV cache to DRAM and disks to
support offline inference of LLMs. DeepSpeed Inference
[4,39,40] offloads model weights to the DRAM and disks and
fetches them on demand. Lina [24] offloads infrequently used
expert weights of LLMs to the host memory to improve the
memory efficiency. PowerInfer [43] and LLM in a flash [3]
utilize sparsity [26, 28] in FFN computation to offload most
of the inactive weights to the host memory or disks to re-
duce both memory usage and the computation. FastServe [55]
schedules the KV caches to the host memory for optimiz-
ing the job completion time. In contrast, CachedAttention
exploits KV caching offloading to reduce the recomputation
overhead in multi-turn conversations.

6 Conclusion

This paper proposes CachedAttention, a new attention that
allows the reuse of the KV caches for any ensuing turns of the
same conversation, achieving a significant reduction in the
recomputation overhead of KV caches in LLMs. To improve
the efficiency of CachedAttention, we design overlapped KV
cache access, hierarchical KV cache placement, and positional
encoding decoupled KV cache truncation schemes. Extensive
experimental results demonstrate that CachedAttention sig-
nificantly decreases the TTFT by up to 88% and improves the
prompt prefilling throughput by 8.2× for multi-turn conversa-
tions. It reduces the end-to-end inference cost by up to 56%. It

also decreases the TTFT by up to 95% and enhances prompt
prefilling throughput by 22× for long sequence inference.

References

[1] Amey Agrawal, Ashish Panwar, Jayashree Mohan,
Nipun Kwatra, Bhargav S Gulavani, and Ramachan-
dran Ramjee. Sarathi: Efficient llm inference by piggy-
backing decodes with chunked prefills. arXiv preprint
arXiv:2308.16369, 2023.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong,
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-
hai. Gqa: Training generalized multi-query transformer
models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

[3] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a
flash: Efficient large language model inference with lim-
ited memory. arXiv preprint arXiv:2312.11514, 2023.

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, SC, 2022.

[5] AWS. Amazon ec2 p4d pricing. https://aws.amaz
on.com/ec2/instance-types/p4/.

[6] AWS. Amazon ec2 pricing. https://aws.amazon.c
om/ec2/pricing/.

[7] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence, AAAI,
2020.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

[9] Asit Dan and Don Towsley. An approximate analysis
of the lru and fifo buffer replacement schemes. In Pro-
ceedings of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages
143–152, 1990.

14

https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

[10] Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. Skipdecode: Autoregressive skip decoding with
batching and caching for efficient llm inference. arXiv
preprint arXiv:2307.02628, 2023.

[11] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. In Proceedings of Advances in
Neural Information Processing Systems, NeuIPS, 2022.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[13] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Ji-
awei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive kv cache compression for llms. arXiv
preprint arXiv:2310.01801, 2023.

[14] Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith,
and Luke Zettlemoyer. Demystifying prompts in lan-
guage models via perplexity estimation. arXiv preprint
arXiv:2212.04037, 2022.

[15] Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. Frage: Frequency-agnostic word rep-
resentation. In Proceedings of Advances in Neural In-
formation Processing Systems, NeuIPS, 2022.

[16] Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. Lm-infinite: Simple on-the-fly
length generalization for large language models. arXiv
preprint arXiv:2308.16137, 2023.

[17] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing
Xu, and Yunhe Wang. Transformer in transformer. In
Proceedings of Advances in Neural Information Pro-
cessing Systems, NeuIPS, 2021.

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding.
arXiv preprint arXiv:2009.03300, 2020.

[19] InternLM. Lmdeploy. https://github.com/Inter
nLM/lmdeploy.

[20] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[21] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Emma Bou

Hanna, Florian Bressand, et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

[22] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with
pagedattention. In Proceedings of ACM Symposium
on Operating Systems Principles, SOSP, 2023.

[23] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. How long can context length of open-
source llms truly promise? In Workshop in Proceedings
of Advances in Neural Information Processing Systems,
NeuIPS Workshop, 2023.

[24] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and
Hong Xu. Accelerating distributed moe training and
inference with lina. In Proceedings of USENIX Annual
Technical Conference, ATC, 2023.

[25] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploit-
ing the persistence of importance hypothesis for llm
kv cache compression at test time. arXiv preprint
arXiv:2305.17118, 2023.

[26] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Con-
textual sparsity for efficient llms at inference time. In
Proceedings of International Conference on Machine
Learning, ICML, 2023.

[27] Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

[28] Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. Relu
strikes back: Exploiting activation sparsity in large lan-
guage models. arXiv preprint arXiv:2310.04564, 2023.

[29] Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. Using an llm
to help with code understanding. In Proceedings of
IEEE/ACM International Conference on Software Engi-
neering, ICSE, 2024.

[30] NVIDIA. Fastertransformer. https://github.com/N
VIDIA/FasterTransformer.

[31] NVIDIA. Nvidia collective communications library
(nccl). https://developer.nvidia.com/nccl.

15

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/nccl

[32] OpenAI. https://openai.com/blog/chatgpt,
2024.

[33] OpenAI. https://platform.openai.com/docs/a
ssistants/how-it-works/managing-threads-a
nd-messages, 2024.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of Advances in Neural
Information Processing Systems, NeuIPS, 2019.

[35] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo
Goiri, Aashaka Shah, Saeed Maleki, and Ricardo Bian-
chini. Splitwise: Efficient generative llm inference using
phase splitting. arXiv preprint arXiv:2311.18677, 2023.

[36] Guilherme Penedo, Quentin Malartic, Daniel Hess-
low, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and
Julien Launay. The RefinedWeb dataset for Falcon LLM:
outperforming curated corpora with web data, and web
data only. arXiv preprint arXiv:2306.01116, 2023.

[37] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. In Proceedings of Machine
Learning and Systems, MLSys, 2023.

[38] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal
of machine learning research, 2020.

[39] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:
Advancing mixture-of-experts inference and training to
power next-generation ai scale. In Proceedings of In-
ternational Conference on Machine Learning, ICML,
2022.

[40] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC, 2021.

[41] ShareGPT. Sharegpt. https://sharegpt.com/.

[42] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E Gonzalez, et al. Flexgen:

High-throughput generative inference of large language
models with a single gpu. In Proceedings of Interna-
tional Conference on Machine Learning, ICML, 2023.

[43] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
Powerinfer: Fast large language model serving with a
consumer-grade gpu. arXiv preprint arXiv:2312.12456,
2023.

[44] Benjamin Spector and Chris Re. Accelerating llm infer-
ence with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

[45] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. Roformer: Enhanced trans-
former with rotary position embedding. Neurocomput-
ing, 568:127063, 2024.

[46] Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[48] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[49] Valentin Touzeau, Claire Maïza, David Monniaux, and
Jan Reineke. Fast and exact analysis for lru caches.
Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Pro-
ceedings of Advances in Neural Information Processing
Systems, NeuIPS, 2017.

[51] vLLM Project. vllm: Easy, fast, and cheap llm serving
with pagedattention. https://github.com/vllm-p
roject/vllm/.

[52] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. Mint: Evaluating
llms in multi-turn interaction with tools and language
feedback. arXiv preprint arXiv:2309.10691, 2023.

[53] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo.
Tabi: An efficient multi-level inference system for large

16

https://openai.com/blog/chatgpt
https://platform.openai.com/docs/assistants/how-it-works/managing-threads-and-messages
https://platform.openai.com/docs/assistants/how-it-works/managing-threads-and-messages
https://platform.openai.com/docs/assistants/how-it-works/managing-threads-and-messages
https://sharegpt.com/
https://github.com/vllm-project/vllm/
https://github.com/vllm-project/vllm/

language models. In Proceedings of the European Con-
ference on Computer Systems, EuroSys, 2023.

[54] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
Huggingface’s transformers: State-of-the-art natural lan-
guage processing. arXiv preprint arXiv:1910.03771,
2019.

[55] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang,
Xuanzhe Liu, and Xin Jin. Fast distributed inference
serving for large language models. arXiv preprint
arXiv:2305.05920, 2023.

[56] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xi-
aoyun Zhang, and Chi Wang. Autogen: Enabling next-
gen llm applications via multi-agent conversation frame-
work. arXiv preprint arXiv:2308.08155, 2023.

[57] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks. arXiv preprint
arXiv:2309.17453, 2023.

[58] Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934, 2020.

[59] Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkat-
tention: Efficient self-attention with prefix-aware kv
cache and two-phase partition. arXiv preprint
arXiv:2402.15220, 2024.

[60] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative models.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2022.

[61] Lingfan Yu and Jinyang Li. Stateful large lan-
guage model serving with pensieve. arXiv preprint
arXiv:2312.05516, 2023.

[62] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[63] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. Ernie: Enhanced language
representation with informative entities. arXiv preprint
arXiv:1905.07129, 2019.

[64] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H _2 o: Heavy-
hitter oracle for efficient generative inference of large
language models. arXiv preprint arXiv:2306.14048,
2023.

[65] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-
judge with mt-bench and chatbot arena. arXiv preprint
arXiv:2306.05685, 2023.

[66] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Chris-
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al.
Efficiently programming large language models using
sglang. arXiv preprint arXiv:2312.07104, 2023.

17

	Introduction
	Background and Motivation
	Generative LLM Inference Basics
	Autoregressive Generation
	Multi-turn Conversation Inference
	Opportunities and Challenges

	The CachedAttention Design
	Overview
	Overlapped KV Cache Access
	Layer-wise Pre-loading from Memory to HBMs
	Asynchronous Saving from HBMs to Memory

	Hierarchical KV Cache Placement
	Scheduler-aware Fetching from Disks to Memory
	Scheduler-aware Eviction from Memory to Disks

	Decoupled KV Cache Truncation

	Performance Evaluation
	Experimental Setup
	End-to-end Performance
	Ablation Studies
	Recomputation v.s. CachedAttention
	Overlapped KV cache Access
	Scheduler-aware Fetching and Eviction
	Performance of Decoupled KV Cache Truncation
	Accuracy of Decoupled Positional Encoding
	Performance for Long Sequence Inference
	The Cache Capacity Requirement
	Impact of Caching Storage Mediums

	Related Work
	Conclusion

