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Abstract

Motivation: As DNA data storage systems gain popularity, the need for an efficient trace reconstruction

algorithm becomes increasingly important. These algorithms aim to reconstruct the original encoded sequence

from its noisy sequenced copies (or “traces”), enabling a faster and more reliable decoding process. Previous

works have often been adaptations of methods for multiple sequence alignment or read error correction,

typically operating under strict assumptions such as fixed error rates. However, such methods demonstrate

limited generalizability to real datasets with higher error rates and suffer from slow processing times when

dealing with a large number of traces.

Results: We propose a new probabilistic formulation of the trace reconstruction problem. Instead of

optimizing alignment among traces, we model the traces as observations of a k-th order Markov chain

and try to predict the sequence that is generated by the Markov chain with the highest probability. Such

a formulation inspires a novel solution, i.e. Bidirectional Beam Search (BBS), whose reconstruction phase

operates in linear time with respect to the length of the encoded sequences. Experiments on multiple in-

house and public Nanopore datasets demonstrate that BBS achieves top-tier accuracy compared with the

state-of-the-art methods while being ∼20x faster, showing its potential to enhance the efficiency of DNA

data storage systems.

Availability and Implementation: The implementation of BBS is available at https://github.com/

GZHoffie/bbs, and the dataset and scripts for reproducibility are available at https://github.com/

GZHoffie/bbs-test.
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Introduction

DNA data storage has emerged as a transformative solution

for modern information storage thanks to its extraordinarily

high data density (up to 455 billion GB per gram) [6], long-

term data integrity, and low energy consumption [12, 41]. In

this paradigm, digital data is encoded as nucleotide sequences,

synthesized into DNA strands, and later retrieved through PCR

and sequencing [32]. The trace reconstruction problem, which aims

to reconstruct the original data from the error-prone sequenced

reads, or “traces”, is vital in building an efficient and reliable

DNA data storage system [22]. An ideal reconstruction algorithm

must be fast to reduce latency, accurate to prevent data loss or re-

sequencing, and be able to work with as few traces as possible to

eliminate the need for multiple PCR rounds and deeper sequencing

coverages.

Recent advances in third-generation sequencing technologies,

notably Oxford Nanopore’s portable sequencers, have expanded

the capabilities of DNA data storage [7, 39]. By supporting

real-time sequencing of longer read lengths, higher sequencing

speeds (< 0.02 seconds per base per pore [25], compared

to > 2 minutes per base in Illumina sequencing [18, 19]),

and PCR-free protocols [34], Nanopore technology offers the

potential to significantly increase data density and reduce read

latency. However, these benefits are offset by a higher mean

error rate of around 6% [11], which, along with errors from

cost-effective synthesis methods [1], greatly complicate the

reconstruction process. Additionally, unlike genome assembly
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and multiple sequence alignment (MSA) problems, DNA storage

systems can leverage prior knowledge such as the length of the

encoded sequence and error correction codes (ECC) to aid in

reconstruction [30]. Effectively integrating this prior knowledge

while mitigating errors in the reads presents significant challenges

to the trace reconstruction algorithms.

A large swath of algorithms have been proposed to solve the

trace reconstruction algorithm. Based on the various optimization

goals, the methods can generally be categorized into alignment-

based, IDS-channel-based, assembly-based, and deep-learning-

based.

Several popular algorithms used for MSA have also been used

for the trace reconstruction problem. For example, Antkowiak

et al. utilized the alignment results of MUSCLE along with a

weighted majority voting to find the consensus sequence [1, 13],

and Xie et al. demonstrated superior error-correcting capabilities

using MAFFT [20, 40]. MSA algorithms have also been shown to

have good performance under high error rates [1]. However, finding

global optimal scoring metrics for the alignment under different

synthesis and sequencing conditions is not trivial and has to be

determined empirically. In fact, it has been demonstrated that

the error situation is highly contextual in Nanopore sequencing

and a global error scoring mechanism is often inadequate at

encapsulating the nuanced error patterns in Nanopore reads [28].

Moreover, due to the exponential time complexity as a function

of the number of sequences, MSA algorithms are limited to small

clusters of reads for efficient decoding and cannot handle elevated

sequencing depths.

Insertion-Deletion-Substitution (IDS)-channel-based methods

model the DNA synthesis and sequencing process as a

communication channel, where insertions, deletions, and

substitutions occur at each sequence position with probabilities pI ,

pD, and pS respectively [36]. These methods aim to reconstruct

the original sequence by finding the consensus string that

maximizes the likelihood of observing the given traces [4] under

the aforementioned assumption. In practice, this optimization is

typically performed by iteratively correcting errors in the reads

until they converge to a consensus, as seen in the Bitwise Majority

Alignment (BMA) algorithm [3]. Several variants of BMA have

been proposed, including BMA Lookahead, which improves error

correction by looking at a longer range of bases in the reads [15, 23,

27], and Trellis BMA, which refines the IDS-channel with a hidden

Markov model [36]. Although these approaches are theoretically

well-founded under the IDS-channel model, they may face

challenges when applied to real datasets, where the assumption

of independent error occurrence does not always hold. This is

especially evident for third-generation sequencing technologies,

such as Nanopore, where base-pairs are not individually sequenced

but rather DNA fragments are indirectly deduced by decoding

the electrochemical signals of consecutive overlapping 10-to-20

base-pair oligo fragments. Consequently, successive errors are not

independent and sequencing errors are often more prevalent at

the two ends of a read than the middle section [1, 24], leading

to deviations from the expected error model. Similar to multiple

sequence alignment (MSA) algorithms, building a universally

robust error model remains a challenge.

While previous methods depend largely on the chosen hyper-

parameters and/or the error model determined using the training

data, the assembly-based methods offer a “parameter-free”

approach, aiming to maximize the number of reads that agree

with the subsequences of the final consensus. This is achieved by

greedily identifying the maximum-weighted path in the de Bruijn

graph using DBGPS [35] and by assembling the longest common

subsequences between each pair of reads in the iterative algorithm

(ITR) [31]. These methods demonstrated superior accuracy across

different datasets. However, they are computationally intensive

and fail to fully account for the prior knowledge of the encoded

sequence.

Recently, deep-learning-based methods emerged as a popular

alternative for trace reconstruction, which optimizes the alignment

and consensus construction process by auto-learning the error

patterns. RobuSeqNet assigns weights to each read using

convolutional layers and attention mechanism [29], and finds

the consensus sequence based on the weighted sum of all

sequences within the cluster. DNA-GAN [42] and Single-Read

Reconstruction (SRR) Algorithm [26] attempted to output the

consensus sequence directly in the network output. Such methods

show promising results but incur high computational costs and

require special hardware. Its adaptability to complex sequencing

error patterns also warrants further investigation.

In this work, we aim to propose a computationally lightweight

yet highly accurate trace reconstruction algorithm that is capable

of reproducing the original data sequence at low sequencing

depths. Our work extends both assembly-based and deep-learning-

based methods for trace reconstruction algorithms. Rather than

optimizing sequence alignment or learning a global error model

for the entire dataset, we model the traces within each cluster as

observations from a k-th order Markov chain and aim to predict

the sequence with the highest likelihood of being emitted. This

approach allows error probabilities to be estimated independently

at each position within every strand cluster, providing greater

flexibility in handling complex sequencing errors.

To efficiently identify the most probable sequence, we introduce

the bidirectional beam search (BBS) algorithm, which leverages

the learned Markov chain to determine the most likely next

trace. Notably, the computational complexity of the reconstruction

phase of our BBS algorithm scales linearly with the length of

the consensus sequence, making it highly efficient. Experimental

results on multiple Nanopore datasets and various cluster sizes

demonstrate that our approach is among the most accurate

methods when compared with the state-of-the-art algorithms

while being ∼20x faster, highlighting its potential to improve the

efficiency of DNA data storage pipelines significantly.

Method

Problem Formulation

Let us denote the set of alphabets to be Σ = {A, C, G, T}.
Algorithms for trace reconstruction problems take a set of N

traces, C = {c1, . . . , cN}, as input, where each ci in C is a string

Σ∗ that is some erroneous version of a seed string s ∈ ΣL, and aim

to output the seed string ŝ such that s = ŝ with high probability.

For simplicity, we denote Si:j as the subsequence of S from the i-th

to the j-th character, Si, Si+1, . . . , Sj . We also write Si:j = S′
i:j

to represent the event Si = S′
i ∧ Si+1 = S′

i+1 ∧ · · · ∧ Sj = S′
j .

While the intuition and the purpose of the trace reconstruction

problem are clear, the formal definition of the optimization

objective varies across different methods. MSA-based methods

attempt to find the consensus in the alignment of all the traces that

maximize the global alignment score [1, 13, 20, 40], while deep-

learning-based methods minimize the loss function that captures
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the reconstruction errors measured using edit distance [35, 42].

The most widely used definition is to model the synthesis and

sequencing process as an insertion-deletion-substitution (IDS)

channel and attempt to find the seed string that maximizes the

likelihood of observing the traces [4, 36].

IDS-channel-based trace reconstruction.

Input: A set of traces C.

Assumptions:

• Each trace ci ∈ C is independent.

• Each trace ci is a modified version of the seed string

s ∈ ΣL, where insertion, deletion, substitution, and

matching happen at each position with probability

pI , pD, pS , pM respectively, with pI+pD+pS+pM =

1.

Output: argmaxŝ∈ΣL Pr[C | ŝ].

Under the assumptions, the log-likelihood of observing the

traces can be calculated by

log Pr[C | ŝ] =
∑
ci∈C

log Pr[ci | ŝ] (1)

=
∑
ci∈C

(Mi · log pM + Si · log pS +Di · log pD + Ii · log pI)

where Mi, Si, Di, and Ii denote the total number of matches,

substitutions, deletions, and insertions needed to transform ŝ to

the trace ci. The goal can then be interpreted as finding the length-

L string ŝ with the highest alignment score defined by pI , pD, pS ,

and pM to all the traces.

This problem definition, though supported by many theoretical

works [8, 9, 10, 17, 21, 37], might encounter problems when applied

to real-life data. Firstly, solving the optimization is hard. In

the general case, the best existing solution to the optimization

problem is brute-force [4], taking exponential time with respect to

sequence length L. Secondly, even if the optimal string ŝ is found,

it doesn’t necessarily reflect the true alignment. In real datasets,

the fixed pI , pD, pS , and pM can vary across different clusters and

positions within the traces. Notably, error rates tend to be higher

at the ends of reads [1], leading to inconsistencies and reducing

the reliability of alignment scores. Choosing the correct values

for pI , pD, pS , and pM is challenging since different definitions

of these parameters can result in drastically different alignments

and consensus sequences. Furthermore, when incorporating prior

knowledge of the encoded sequence length, the optimal alignment

may not accurately represent the true consensus, as illustrated in

the example in Figure 1.

Therefore, we propose an alternative objective. Instead of

finding the seed string that maximizes the likelihood of observing

the traces, we model the traces as observations of a k-th order

Markov chain (k-MC) consisting of L variables, S1, . . . , SL, where

Si ∈ Σ = {A, C, G, T}, and assume that for all i = k+1, k+2, . . . , L,

Pr[Si | S1:i−1] = Pr[Si | Si−k:i−1],

and try to predict the most probable trace that is generated by the

k-MC. We can then learn the conditional probabilities DC from

Alignment A:

seq1: AGTCC-ACT

seq2: AGAAC--TT

seq3: AGTCCCATT

cons: AGTCC-ATT

Alignment B:

seq1: AGTCC-ACT-

seq2: AGA---ACTT

seq3: AGTCCCA-TT

cons: AGTCC-ACTT

Fig. 1: The optimal alignment and consensus (denoted cons in the

figure) may differ given different scoring metrics. Neither of the

alignments is correct if given the prior knowledge that the length

of the encoded sequence is 10, in which case the optimal consensus

would be AGTCCCACTT.

the set of traces C, and perform the maximum likelihood estimate

(MLE) of the future trace.

k-MC-based trace reconstruction.

Input: A set of traces C.

Assumptions: Each trace ci ∈ C can be viewed as

independent observations of a k-th order Markov chain.

Output: argmaxŝ∈ΣL PrS∼DC
[S = ŝ].

Under the k-MC assumption, the joint probability of observing

ŝ as the next observation can be calculated by

log Pr
S∼DC

[S = ŝ] = log Pr
S∼DC

[S1:k+1 = ŝ1:k+1]

+
L∑

i=k+2

log Pr
S∼DC

[Si = ŝi | Si−k:i−1 = ŝi−k:i−1]. (2)

Intuitively, the new problem definition also tries to find the

underlying seed string used to generate the traces. Under the

IDS-channel assumption, if pM = max{pM , pI , pD, pS}, the most

probable future trace given a seed string s is s itself, with the

highest likelihood of pLM .

The advantages of the new problem definition lie in the

following: Firstly, exact as well as heuristic algorithms to find

the most probable observation in a Markov model, such as the

Viterbi algorithm, are well studied [38]. Secondly, it uses weaker

assumptions than the previous definition based on IDS-channel,

which is essentially a first-order hidden Markov model with fixed

probability values for errors. Since k is chosen such that all

the (k + 1)-mers are unique in the sequences, the conditional

probabilities DC for each cluster C allow us to learn different error

probabilities for each position in each cluster. Thirdly, calculating

the likelihood for the next trace doesn’t require any alignment

or calculation of edit distance among the traces, leading to high

efficiency. Finally, the value log PrS∼DC
[S = ŝ] represents the

joint likelihood of observing ŝ as the next trace, allowing us to

assign a confidence score to the output, as well as compare the

goodness of the output sequence, aiding future post-processing

and the downstream decoding tasks.

Next, we propose a novel solution, i.e. bidirectional beam

search (BBS), to efficiently find the most probable observation

of the estimated k-MC with high probability.

Bidirectional beam search (BBS) algorithm

The main idea of the bidirectional beam search algorithm is to

incorporate the learned parameters k-MC model into the de Bruijn
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Fig. 2: The general workflow of the BBS algorithm. In the first step, the set of original traces C (top left) is converted into a hash table

that maps each (k + 1)-mer to the number of times it appears in C (bottom left). k is chosen such that all the k-mer appear at most

once in each trace. We then use the (k + 1)-mer profile to estimate the conditional probabilities DC (bottom right), which replaces the

edge weights in the De Bruijn graph (top right). Finally, beam search (with beam width B = 2 in the figure) is performed to find the

best w paths of length L in the De Bruijn graph. It saves time by skipping paths that are not promising (marked gray) in the graph. For

clarity, only one directional beam search is shown in the figure.

graph and find the best path that represents the most probable

sequence generated by the k-MC model using beam search. The

beam search is done in two directions, one on the original traces

and one on the reversed traces, for optimal performance. An

illustration of the BBS algorithm is shown in Figure 2.

The first step of the BBS algorithm is to choose the value of k.

In our algorithm, we choose the smallest k within a predefined

range [kmin, kmax] such that all the k-mers are unique within

each trace. The expected value of k is O(logL) (supplementary

material section 3). In rare cases where such k cannot be

found, kmax is used. Such cases can be avoided by carefully

designing the encoding scheme in practice. The uniqueness ensures

that the de Bruijn graph built using the (k + 1)-mers in the

traces is a directed acyclic graph (DAG). We also choose the

smallest k that satisfies uniqueness as smaller k can lead to better

predictions of the conditional probabilities and, consequently, a

better reconstruction performance. We then store the (k+ 1)-mer

counts in a hash table. This process takes time linear to the size

of the input.

We can now build a modified de Bruijn graph with the following

specifications,

• Vertices (denoted V ): All possible (k + 1)-mers that appear

in the traces, plus a special vertex Start indicating the start

of the reads.

• Edges (denoted E): For each (k+1)-mers v ∈ Σk+1 that have

appeared at the start of each trace, a directed edge (Start, v)

is added. We also add a directed edge between pairs of (k+1)-

mers (u, v) if the last k bases of u matches the first k bases of

v. Note that this does not require adjacency of u and v in the

same sequence.

• Edge weights: For each edge (Start, v) ∈ E, we assign the

weight to be the estimated joint probability of the first (k +

1)-mer in s being v,

w((Start, v)) = log P̂rS∼DC
[s1:k+1 = v1:k+1]

while for other edges (u, v) ∈ E, we assign the weight to be the

estimated conditional probability.

w((u, v)) = log P̂rS∼DC
[si = vk+1 | si−k:i−1 = v1:k].

Based on the k-MC assumption, we can estimate the joint

probability and the conditional probabilities using the maximum

likelihood estimate,

P̂rS∼DC
[s1 = v1, . . . , sk+1 = vk+1] =

n1(v)

N
,

where n1(v) refers to the number of times the (k+1)-mer v appears

as the first (k + 1)-mer in the traces, while

P̂rS∼DC
[si = vk+1 | si−k:i−1 = v1:k]

=
n((v1, v2, . . . , vk, vk+1))∑
j∈Σ n((v1, v2, . . . , vk, j))

,

where n(v) = n((v1, . . . , vk+1)) refers to the number of times (k+

1)-mer v appears in anywhere in the traces. In practice, especially

with a high error rate and small coverage, the numbers n(v) can

be small, resulting in inaccurate estimations. We therefore apply

Laplace smoothing,

P̂rS∼DC
[si = vk+1 | si−k:i−1 = v1:k]

=
n((v1, v2, . . . , vk, vk+1)) + α∑
j∈Σ[n((v1, v2, . . . , vk, j)) + α]

, (3)

and set the default α = 1. Intuitively, larger α would lead to larger

penalties on “rare” paths that very few traces agree.

The construction is similar to the typical de Bruijn graphs used

for assembly except for the assignment of edge weights. With this

construction, a path starting from Start vertex and containing

L−k+1 vertices would correspond to a string s ∈ ΣL, and weight

of the edges in the path sum up to log PrS∼DC
[S = s]. Thus, the

trace reconstruction problem is reduced to a fixed-length longest

path problem,
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Algorithm 1: Beam Search for Trace Reconstruction

Input: Learned probabilities from the traces DC , Beam

width B, Length of sequence L, Length of k-mer

k, Target vertex v.

Output: Best Length-L path in the De Bruijn graph.

1 Function BeamSearch(DC , B, L, k, v)

/* Initialization of the frontier */

2 Frontier ← [];

3 foreach (k + 1)-mer u at the front of traces in C do

4 Insert ([u], log PrS∼DC
[S1:k+1 = u]) into Frontier;

5 end

6 Frontier ← top B tuples by weights in Frontier;

/* Run L− k iterations of beam search */

7 for iteration← 1 to L− k do

8 NewFrontier ← [];

9 foreach (path, w) in Frontier do

10 u← path[−1]; ; // Last k-mer in the path

11 foreach j ∈ {A,C,G, T} do
12 u′ ← (u2, u3, . . . , uk+1, j);

13 if u′ appeared in the traces then

14 NewPath ← path appended with u′;

15 w′ ← w + log Pr
S∼DC

[Si = j | Si−k:i−1 =

u1:k];

16 Insert (NewPath, w′) into NewFrontier;

17 end

18 end

19 end

20 NewFrontier ← top B tuples by weights in

NewFrontier;

21 if NewFrontier is empty then

22 break ; // There are no candidate paths

longer than the ones in current frontier

23 end

24 Frontier ← NewFrontier;

25 end

/* Find the highest weight path, preferably

ending with v */

26 CandidatePaths

← {(path, w) ∈ Frontier | path[−1] = v};
27 if CandidatePaths is not empty then

28 return (path,weight) with the highest weight from

CandidatePaths;

29 else

30 return (path,weight) with the highest weight from

Frontier;

31 end

32 end

Fixed-length longest path problem.

Input: A directed acyclic graph G(V,E), the starting

vertex u ∈ V and an ending vertex v ∈ V , and a

predefined length l.

Output: A length l path that starts from u, ends in v,

with the maximum sum of edge weights.

In our constructed graph, the length l = L−k+1, and the goal

vertex v are set heuristically to be the most frequently appearing

(k + 1)-mer at the end of the traces.

A brute-force algorithm to solve the fixed-length longest path

problem is to perform l iterations of breadth-first search (BFS)

that allows repeated visiting of the same vertex. However, such

an algorithm may result in O(|Σ|l) possible paths of length l in

the end. Therefore, we opt to use beam search to approximate

the optimal length-l path in the constructed graph. The benefits

of using beam search involve its fast running time and its ability

to output multiple candidate good consensus sequences, allowing

more room for errors. By running exactly l iterations of beam

search, we also leverage the prior information of the sequence

length. A detailed description of the beam search can be found

in algorithm 1.

In each iteration of beam search, at most B paths are kept in

the frontier, and at most B ·|Σ| paths are explored. The calculation

of conditional probabilities is done during the beam search using

equation 3, which costs O(1) time for each calculation as the

(k + 1)-mer profile is stored using hash tables. At the end of each

iteration, the top B paths with the highest weight are inserted

into the new frontier. The top B tuples are selected using Hoare’s

selection algorithm [16], costing O(B · |Σ|) time. This bounds the

time complexity of the beam search to be O(LB|Σ|), which can

be regarded as O(L) for small B and |Σ|.
Notice that the joint probability in equation 2 can also be

calculated in a reversed manner,

log Pr
S∼DC

[S = ŝ] = log Pr
S∼DC

[SL−k:L = ŝL−k:L]

+

L−k−1∑
i=1

log Pr
S∼DC

[Si = ŝi | Si+1:i+k = ŝi+1:i+k], (4)

which hints that the beam search can also be done in the other

direction that starts from the end of the traces. An intuitive way

is to perform a beam search in both directions and select the best

sequence with the highest path weight, as shown in algorithm 2.

In the actual implementation, the conditional probabilities DC′

are calculated from the same (k+1)-mer profile instead of reversing

every trace in C to save time. As algorithm 2 essentially performs

algorithm 1 twice, the time complexity is also O(L).

Results

Experiment setup

To test the efficiency and correctness of our algorithm, we

compare the performance against the state-of-the-art algorithms

in each type of method for trace reconstruction. In particular,

MUSCLE [13] from the MSA-based methods, TrellisBMA [36]

from the IDS-channel-based methods, and ITR [31] from the

assembly-like methods. We utilized the latest MUSCLE v5 [14]

and implementation by Antkowiak et al. to return the consensus

sequence from the alignment. The newest deep-learning-based

methods were not included due to the lack of publicly available

code [42]. Instead, we compare our results with their reported

accuracy.

Additionally, we compare our method against a newly

published method, Conditional Probability Logic (CPL), which

is a refinement step for the deep learning method DNAFormer

[2]. Though BBS was developed independently of CPL, they share
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Algorithm 2: Bidirectional Beam Search

Input: The set of traces C, Beam width B, Length of

sequence L, Length of k-mer k, Target k-mer v (in

forward direction) and v′ (in backward direction).

Output: The best length-L path in the De Bruijn graph.

1 Function BidirectionalBeamSearch(C, B, L, k, v, v′)

/* Forward beam search */

2 Learn DC from the set of traces C;

3 pathf ,weightf ← BeamSearch(DC , B, L, k, v);

/* Reverse beam search */

4 C′ ← C with every trace reversed;

5 Learn DC′ from the set of traces C′;

6 pathb,weightb ← BeamSearch(DC′ , B, L, k, v′)

7 end

/* Select the best path */

8 if pathf .len() ̸= pathb.len() then

9 return the longer path of pathf and pathb;

10 else

11 if weightf > weightb then

12 return pathf ;

13 else

14 return pathb;

15 end

16 end

a similar methodology. CPL utilizes a first-order Markov chain

with the conditional probabilities estimated using the pairwise

alignments of the first read with the rest, instead of k-mer counting

in BBS, resulting in a time complexity of O(NL2). In addition,

CPL finds the optimal longest path in the constructed graph,

whereas BBS employs a greedy algorithm to save time.

All experiments are run on a machine with Intel Core i9-13900H

CPU, with 20 threads and 16 GB of memory. MUSCLE is the only

tool with multi-threaded implementation. All tools are run using

their default parameters. For BBS, the beam width is chosen to

be 20. No error correction code is assumed.

Similar to previous works, we use three metrics to measure the

correctness of the algorithms, including the following,

1. Success rate, defined by the percentage of the clusters that are

reconstructed correctly without any error.

2. Average Hamming distance per cluster, where the Hamming

distance between the ground truth sequence s and the

predicted sequence ŝ is

dH =
L∑

i=1

I(length(ŝ) < i ∨ si ̸= ŝi)

where I(A) is the indicator function which returns 1 if A is

evaluated to true and 0 otherwise.

3. Average edit distance per cluster, where the edit distance is

calculated from the optimal alignment between s and ŝ.

BBS allows accurate and efficient trace reconstruction from

real Nanopore reads

We test the five algorithms on real datasets, with three open-

source datasets published by Bar-Lev et al. [2] (Nanopore two

flowcells), Srinivasavaradhan et al. [36] and Chandak et al. [7], as

shown in Table 1. The dataset from Bar-Lev et al. is randomly

downsampled to 10,000 clusters so that the tested tools finish in a

reasonable run time. Clustering for the dataset from Chandak et

al. is done by simply mapping the sequenced reads to the closest

sequence in the ground truth (perfect clustering). On the other

hand, the dataset Bar-Lev et al. uses its own binning algorithm [2],

and the Srinivasavaradhan et al. utilize the clustering algorithm

from Rashtchian et al. [30]. The performance of each algorithm is

listed in Table 2.

Table 1. Statistics of the three real datasets. The error rates are estimated

using the script by Srinivasavaradhan et al. [36]

Dataset Bar-Lev et

al. [2]

Srinivasavaradhan

et al. [36]

Chandak

et al. [7]

#Clusters 10000 9984 1466

Synthesis tech1 TB TB CA

Sequencing tech MinION MinION MinION

Clustering alg. Bar-Lev et

al. [2]

Rashtchian et al.

[30]

Perfect

L 140 110 108

Coverage 21.37 27.01 114.29

pD 1.17% 1.86% 5.09%

pI 1.52% 2.14% 4.56%

pS 1.65% 1.77% 3.91%

Error rate 4.34% 5.77% 13.56%

1TB = Twist Bioscience, CA = CustomArray.

BBS consistently achieves top-tier reconstruction accuracy

across all three datasets while significantly reducing the running

time. Against MUSCLE, Trellis BMA, and ITR, BBS achieves

3-6x smaller Hamming distance, indicating its ability to reliably

reconstruct the encoded sequence, especially for datasets with high

error rates and higher coverage.

Notably, the success rate of the BBS algorithm in the

dataset from Srinivasavaradhan et al. (94.772%) also surpasses the

reported success rate of deep learning methods, such as 85.42% in

DNAFormer [2] and 91.73% in DNA-GAN [42], without the need

of training and post-processing.

In the meantime, with the same computational resources, BBS

is also ∼20x faster than the state-of-the-art algorithms, using

only seconds for datasets that used to take minutes to hours

to reconstruct. To test the time complexity of the algorithms,

we generated clusters of size ranging from 10 to 60 to test the

time complexity of the algorithms (supplementary material

section 1). Both BBS and Trellis BMA scale linearly with the

cluster size. However, Trellis BMA shows a much larger constant

factor, making it the slowest of the tested algorithms. MUSCLE,

being a multiple sequence alignment algorithm, demonstrated an

exponential increase with respect to the number of traces. Finally,

both ITR and CPL showed a quadratic increase for cluster sizes

10-30 while being roughly constant for larger cluster sizes. This is

because ITR reduces the runtime by using only the first 25 traces

for cluster size larger than 25 [31]. Such a strategy works fine for

small error rates or datasets with low coverage but demonstrates

a decrease in performance for datasets with high coverage, such as

the Chandak dataset, due to the loss of information.

In addition, we plot the probability that the ground truth

sequence s disagrees with the reconstructed sequence ŝ on the i-

th position, Pr[si ̸= ŝi], against i in Figure 3. Both MUSCLE
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Table 2. Performance of MUSCLE [13, 1], Trellis BMA [36], ITR [31], CPL [2], and BBS (this work) on the three real datasets. The bold text indicates

the best-performing tool, while the underlined text indicates the second-best one.

Dataset Tools Success rate Avg. edit distance Avg. Hamming distance Running time (s)

Bar-Lev et al. [2]

MUSCLE 96.25% 0.258 1.382 1475.55

Trellis BMA 92.41% 0.363 1.635 19759.85

ITR 97.42% 0.221 0.975 12462.04

CPL 98.39% 0.201 0.374 495.22

BBS 98.80% 0.206 0.346 23.84

Srinivasavaradhan et al. [36]

MUSCLE 84.70% 0.259 6.032 1741.65

Trellis BMA 69.57% 0.908 6.003 17859.17

ITR 87.58% 0.232 4.797 7351.52

CPL 94.93% 0.150 1.286 361.05

BBS 94.77% 0.168 1.616 20.01

Chandak et al. [7]

MUSCLE 76.94% 0.366 8.821 7082.75

Trellis BMA 52.32% 1.608 13.094 10744.21

ITR 64.12% 0.666 12.231 1614.64

CPL 90.93% 0.205 2.299 131.60

BBS 91.34% 0.283 2.738 8.52
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Fig. 3: Probability of the ground truth sequence disagreeing with the reconstructed sequence on the i-th position, for all 1 ≤ i ≤ L.

and ITR show a gradual increase in error rate, which is expected

because an early wrong decision or an insertion or deletion error at

the front of the reconstructed sequence can lead to disagreement

in all subsequent positions. Both methods also show a sudden

increase in error rate towards the end of the sequence due to the

fact that the prior information of the encoded sequence length L is

not fully utilized. As a result, the reconstructed sequence of these

two methods often varies in length. On the other hand, Trellis

BMA exhibits a triangular shape since its reconstruction process

starts from the two ends and joins in the middle of the sequence.

It also shows a larger slope compared with MUSCLE and ITR.

Different from the other methods, the error curves of BBS and

CPL are the closest to uniform. BBS chooses the best paths out

of all the length-l paths, leveraging the prior information on the

length of the encoded sequence, and maximizing the global joint

likelihood of observing the whole sequence, rather than focusing

on local subsequences.

While BBS has among the best error correction performance

in real data, its advantage over the other algorithms significantly

reduces in synthetic data where errors are assumed to be

independent and uniformly random (supplementary material

section 2). The discrepancy of error correction performance

between real and synthetic datasets highlights the limitation of

over-simplifying the Nanopore error model, and demonstrates the

advantage of the model- and alignment-free approach of BBS.

BBS achieves top-tier accuracy at all sequencing coverages

Scoring a higher error correction percentage is essential to reducing

cost and latency for data retrieval in DNA storage systems.

When a trace reconstruction fails, the entire lengthy biochemical

process has to be repeated afresh through an expensive re-read.

While the accuracy of a trace reconstruction algorithm can be

improved by having larger clusters, it involves ramping up the

PCR amplification and increasing the sequencing depth, both of

which increase the latency and the cost of a data read. Thus,

achieving high reconstruction accuracy at shallow sequencing

depth is instrumental in reducing the re-read frequency and

reducing stuttering in data retrieval while maintaining a low-cost

DNA storage system.

To evaluate the performance of our reconstruction algorithm

at varying sequencing depths, we randomly sampled 500 clusters

from the Srinivasavaradhan et al. dataset [36] and performed a

subsampling experiment. For each cluster, we randomly selected

a subset of reads to maintain a fixed cluster size. We began by

subsampling each cluster to a size of exactly 2, then repeated the

process for cluster sizes ranging from 4 to 30. The failure rate,
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Fig. 4: Performance of the algorithms at small coverages in the

dataset from Srinivasavaradhan et al.

defined as 1 − success rate, was plotted against the cluster size

(coverage) in Figure 4.

As expected, all algorithms show improved performance with

larger coverage. BBS and CPL consistently outperform the others

across all cluster sizes. They also demonstrate the fastest decrease

in failure rate, converging to the lowest failure rate. Notably, BBS

achieves a success rate of at least 95% at coverage of just 12 reads,

while the MSA- and IDS-channel-based algorithms only reach this

threshold at a coverage of 30 or higher, striking a 60% sequencing

cost reduction for high-success reads. This highlights the ability

of our algorithm to perform effectively with smaller coverages,

offering the potential to shorten latency and save costs by reducing

the required sequencing depth or PCR amplification rounds.

The path weight returned by BBS is a good indicator of

reconstruction quality

Previous non-deep-learning-based trace reconstruction methods

only output one reconstructed sequence per cluster with no

indicator of reconstruction quality. However, with the k-MC

model and beam search, we are able to output multiple candidate

reconstructions, each associated with a path weight that represents

the log-likelihood of observing the sequence as the output of the k-

MC model. Furthermore, we can also calculate a confidence score

for the returned sequence. Let wi be the weight of the i-th path

(denoted pi) in the final frontier, the confidence for the i-th path

can be calculated using a softmax function,

confidence(pi) =
exp(wi)∑B

j=1 exp(wj)
,

which intuitively represents the probability of the i-th path being

the output of the k-MC, given that the output is one of p1, . . . , pB .

We examine the distribution of path weights and the confidence

score of correctly and incorrectly reconstructed clusters from the

dataset from Srinivasavaradhan et al., respectively (Figure 5). It

is clear that the correct and incorrect reconstructions result in a

very different distribution of path weights and confidence scores.

In particular, the incorrect reconstructions tend to have lower path

weights and lower confidence scores. The areas under the receiver

operating characteristic curve (AUROC) of the path weight and

the confidence score are 0.85 and 0.87, respectively.
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Fig. 5: Distribution of the path weight and confidence score for

the correctly (blue) and incorrectly (red) reconstructed clusters in

the dataset from Srinivasavaradhan et al.

We also attempt to fit a simple logistic regression model

using the path weight and confidence score to predict whether

the reconstruction is correct or not. On the dataset from

Srinivasavaradhan et al., the logistic regression model achieves an

AUROC of 0.94. This result indicates the potential use of returned

path weights by the BBS algorithm to infer the correctness of

reconstruction and a hybrid algorithm where more candidate

reconstructions from the beam search or more sophisticated but

slower algorithms can be used for clusters with low confidence

scores, further enhancing the accuracy of the reconstruction.

Each component of BBS is essential for high accuracy

Finally, we conduct an ablation study to test the performance

of BBS with each component removed. Specifically, we apply the

same beam search algorithm to a graph where the edge weights are

defined by standard de Bruijn graph (DBG) edge weights based on

k-mer counts. The resulting performance is significantly lower than

BBS and only marginally higher than the ITR algorithm (“DBG

weight” in Table 3). In addition, the algorithm’s performance

also decreases significantly if the Laplace smoothing is not applied

(“No smoothing” in Table 3). This shows that our replacement of

edge weights with the log of conditional probabilities with Laplace

smoothing is well-suited for the task of consensus finding.

Table 3. Ablation study results showing the change in success rate on the

three datasets when components of BBS are removed.

Dataset Bar-Lev et

al. [2]

Srinivasavaradhan

et al. [36]

Chandak

et al. [7]

BBS 98.80% 94.77% 91.34%

DBG weight −0.39% −4.85% −8.33%
No smoothing −1.90% −2.75% −11.74%
Unidirectional −0.13% −0.72% −0.82%
Greedy Search −2.50% −11.01% −14.33%

We also highlight the superiority of bidirectional beam search

by checking the performance of the algorithm with a one-

directional beam search (“Unidirectional” in Table 3) and a beam

width of B = 1 (“Greedy Search” in Table 3). The consistent

superior performance of BBS over one-directional beam search

across all beam widths (Supplementary material section 3)

further supports the effectiveness of path weight as an indicator

of reconstruction correctness. Additionally, the greedy best-first

search exhibited a significant drop in success rate, highlighting its

reduced flexibility and accuracy compared to the beam search.
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Discussion and Conclusion

The recent surge in the popularity of DNA data storage has

prompted the emergence of many algorithmic problems. The

trace reconstruction problem, being the core step in the decoding

process, is crucial for an accurate, fast, and reliable DNA storage

system. While previous methods focused on optimizing the seed

string to maximize the likelihood of observing the traces, we

propose a new objective to predict the sequence that is most likely

the next trace in the cluster. The likelihood can be calculated by

modeling the traces as observations of a k-th order Markov chain,

where the conditional probabilities can be estimated simply by

counting the (k + 1)-mers in the cluster.

The new problem formulation and model inspire a novel

alignment-free algorithm named Bidirectional Beam Search

(BBS), which predicts the most likely next trace by replacing

weights in the De Bruijn graph with the modeled probabilities

in the k-MC and finding the longest path with a fixed length with

beam search. The beam search is performed once starting from the

start of the sequences, and once from the end. The beam search

operates in linear time with respect to the length of the encoded

sequence.

Experiments on real datasets sequenced by Nanopore show that

BBS is uniquely accurate and fast, especially when dealing with

datasets with high error rates and large coverage. A simulated

study also demonstrated that BBS performs the best for all

coverages, achieving the same success rate using fewer traces than

the other algorithms. Moreover, unlike the previous methods that

only report the reconstructed sequence without any indicator of

the quality of reconstruction, BBS reports the path weight along

with a confidence score, which proves to be a reliable way to find

the wrongly reconstructed sequences, aiding future post-processing

and decoding. The experiment results show the potential of the

BBS algorithm to greatly enhance the efficiency of the current

DNA data storage pipeline.

Possible future directions to improve the algorithms involve

optimizing the choice of parameters, including the beam width B

and the order of the Markov chain k. Due to the fact that BBS

relies on (k+1)-mer profile for trace reconstruction, the algorithm

would inevitably fail if one of the (k + 1)-mer in the encoded

sequence appears erroneous in all the traces. As a result, a careful

choice of k is needed for datasets with high error rates and low

coverage. In addition, the optimal choice of B can also vary with

different coverages. Choosing the optimal values can again enhance

the accuracy of the BBS algorithm (Supplementary material

section 3).

It is also worth investigating whether the k-MC model can be

used in conjunction with error correction codes (ECC) [5, 33].

Though not tested in this work, ECC can be incorporated

smoothly into the beam search procedure, where paths that do

not satisfy the ECC requirements are filtered out before pushing

into the frontier.
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